» Articles » PMID: 27821583

Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses

Overview
Journal Infect Immun
Date 2016 Nov 9
PMID 27821583
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions.

Citing Articles

The type III secretion system effector EspO of enterohaemorrhagic Escherichia coli inhibits apoptosis through an interaction with HAX-1.

Chatterjee S, Lekmeechai S, Constantinou N, Grzybowska E, Kozik Z, Choudhary J Cell Microbiol. 2021; 23(9):e13366.

PMID: 34021690 PMC: 7613270. DOI: 10.1111/cmi.13366.


Intestinal Epithelial Cells and the Microbiome Undergo Swift Reprogramming at the Inception of Colonic Citrobacter rodentium Infection.

Hopkins E, Roumeliotis T, Mullineaux-Sanders C, Choudhary J, Frankel G mBio. 2019; 10(2).

PMID: 30940698 PMC: 6445932. DOI: 10.1128/mBio.00062-19.


The Citrobacter rodentium type III secretion system effector EspO affects mucosal damage repair and antimicrobial responses.

Berger C, Crepin V, Roumeliotis T, Wright J, Serafini N, Pevsner-Fischer M PLoS Pathog. 2018; 14(10):e1007406.

PMID: 30365535 PMC: 6221368. DOI: 10.1371/journal.ppat.1007406.


Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion.

Connolly J, Slater S, OBoyle N, Goldstone R, Crepin V, Ruano-Gallego D Nat Commun. 2018; 9(1):4187.

PMID: 30305622 PMC: 6180029. DOI: 10.1038/s41467-018-06701-4.


Continual conscious bioluminescent imaging in freely moving somatotransgenic mice.

Karda R, Perocheau D, Suff N, Ng J, Delhove J, Buckley S Sci Rep. 2017; 7(1):6374.

PMID: 28743959 PMC: 5526882. DOI: 10.1038/s41598-017-06696-w.

References
1.
Wong A, Pearson J, Bright M, Munera D, Robinson K, Lee S . Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol. 2011; 80(6):1420-38. DOI: 10.1111/j.1365-2958.2011.07661.x. View

2.
Kamada N, Sakamoto K, Seo S, Zeng M, Kim Y, Cascalho M . Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host Microbe. 2015; 17(5):617-27. PMC: 4433422. DOI: 10.1016/j.chom.2015.04.001. View

3.
Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis M, Ntziachristos V . FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods. 2012; 9(6):615-20. DOI: 10.1038/nmeth.2014. View

4.
Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G . Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol. 2004; 6(10):963-72. DOI: 10.1111/j.1462-5822.2004.00414.x. View

5.
Simmons C, Clare S, Ghaem-Maghami M, Uren T, Rankin J, Huett A . Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun. 2003; 71(9):5077-86. PMC: 187366. DOI: 10.1128/IAI.71.9.5077-5086.2003. View