» Articles » PMID: 23382663

Maximizing the Information Content of Experiments in Systems Biology

Overview
Specialty Biology
Date 2013 Feb 6
PMID 23382663
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Our understanding of most biological systems is in its infancy. Learning their structure and intricacies is fraught with challenges, and often side-stepped in favour of studying the function of different gene products in isolation from their physiological context. Constructing and inferring global mathematical models from experimental data is, however, central to systems biology. Different experimental setups provide different insights into such systems. Here we show how we can combine concepts from Bayesian inference and information theory in order to identify experiments that maximize the information content of the resulting data. This approach allows us to incorporate preliminary information; it is global and not constrained to some local neighbourhood in parameter space and it readily yields information on parameter robustness and confidence. Here we develop the theoretical framework and apply it to a range of exemplary problems that highlight how we can improve experimental investigations into the structure and dynamics of biological systems and their behavior.

Citing Articles

Data-driven model discovery and model selection for noisy biological systems.

Wu X, McDermott M, MacLean A PLoS Comput Biol. 2025; 21(1):e1012762.

PMID: 39836686 PMC: 11753677. DOI: 10.1371/journal.pcbi.1012762.


Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments.

Yang J, Daily N, Pullinger T, Wakatsuki T, Sobie E PLoS Comput Biol. 2024; 20(9):e1011806.

PMID: 39259757 PMC: 11460686. DOI: 10.1371/journal.pcbi.1011806.


Achieving Occam's razor: Deep learning for optimal model reduction.

Antal B, Chesebro A, Strey H, Mujica-Parodi L, Weistuch C PLoS Comput Biol. 2024; 20(7):e1012283.

PMID: 39024398 PMC: 11288447. DOI: 10.1371/journal.pcbi.1012283.


Identifying Bayesian optimal experiments for uncertain biochemical pathway models.

Isenberg N, Mertins S, Yoon B, Reyes K, Urban N Sci Rep. 2024; 14(1):15237.

PMID: 38956095 PMC: 11219779. DOI: 10.1038/s41598-024-65196-w.


Designing optimal behavioral experiments using machine learning.

Valentin S, Kleinegesse S, Bramley N, Series P, Gutmann M, Lucas C Elife. 2024; 13.

PMID: 38261382 PMC: 10805374. DOI: 10.7554/eLife.86224.


References
1.
Kreutz C, Timmer J . Systems biology: experimental design. FEBS J. 2009; 276(4):923-42. DOI: 10.1111/j.1742-4658.2008.06843.x. View

2.
Mendes P, Kell D . Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 1999; 14(10):869-83. DOI: 10.1093/bioinformatics/14.10.869. View

3.
Zhou Y, Liepe J, Sheng X, Stumpf M, Barnes C . GPU accelerated biochemical network simulation. Bioinformatics. 2011; 27(6):874-6. PMC: 3051321. DOI: 10.1093/bioinformatics/btr015. View

4.
Fujita K, Toyoshima Y, Uda S, Ozaki Y, Kubota H, Kuroda S . Decoupling of receptor and downstream signals in the Akt pathway by its low-pass filter characteristics. Sci Signal. 2010; 3(132):ra56. DOI: 10.1126/scisignal.2000810. View

5.
Beaumont M, Zhang W, Balding D . Approximate Bayesian computation in population genetics. Genetics. 2003; 162(4):2025-35. PMC: 1462356. DOI: 10.1093/genetics/162.4.2025. View