» Articles » PMID: 27746890

Discovery of 4,6-disubstituted Pyrimidines As Potent Inhibitors of the Heat Shock Factor 1 (HSF1) Stress Pathway and CDK9

Abstract

Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress pathway. Using this approach we identified an initial hit () based on a 4,6-pyrimidine scaffold (2.00 μM). Optimisation of cellular SAR led to an inhibitor with improved potency (, 15 nM) in the HSF1 phenotypic assay. The 4,6-pyrimidine was also shown to have high potency against the CDK9 enzyme (3 nM).

Citing Articles

Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology.

Gumilar K, Chin Y, Ibrahim I, Tjokroprawiro B, Yang J, Zhou M Cancers (Basel). 2023; 15(21).

PMID: 37958341 PMC: 10649344. DOI: 10.3390/cancers15215167.


Targeting HSF1 for cancer treatment: mechanisms and inhibitor development.

Chin Y, Gumilar K, Li X, Tjokroprawiro B, Lu C, Lu J Theranostics. 2023; 13(7):2281-2300.

PMID: 37153737 PMC: 10157728. DOI: 10.7150/thno.82431.


HSF1 Pathway Inhibitor Clinical Candidate (CCT361814/NXP800) Developed from a Phenotypic Screen as a Potential Treatment for Refractory Ovarian Cancer and Other Malignancies.

Pasqua A, Sharp S, Chessum N, Hayes A, Pellegrino L, Tucker M J Med Chem. 2023; 66(8):5907-5936.

PMID: 37017629 PMC: 10150365. DOI: 10.1021/acs.jmedchem.3c00156.


Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma.

Poon E, Liang T, Jamin Y, Walz S, Kwok C, Hakkert A J Clin Invest. 2020; 130(11):5875-5892.

PMID: 33016930 PMC: 7598076. DOI: 10.1172/JCI134132.


The Multifaceted Role of HSF1 in Tumorigenesis.

Alasady M, Mendillo M Adv Exp Med Biol. 2020; 1243:69-85.

PMID: 32297212 PMC: 8236212. DOI: 10.1007/978-3-030-40204-4_5.


References
1.
Zhang Y, Murshid A, Prince T, Calderwood S . Protein kinase A regulates molecular chaperone transcription and protein aggregation. PLoS One. 2012; 6(12):e28950. PMC: 3245242. DOI: 10.1371/journal.pone.0028950. View

2.
Vydra N, Toma A, Widlak W . Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets. 2014; 14(2):144-55. PMC: 4435066. DOI: 10.2174/1568009614666140122155942. View

3.
Asghar U, Witkiewicz A, Turner N, Knudsen E . The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015; 14(2):130-46. PMC: 4480421. DOI: 10.1038/nrd4504. View

4.
de Billy E, Powers M, Smith J, Workman P . Drugging the heat shock factor 1 pathway: exploitation of the critical cancer cell dependence on the guardian of the proteome. Cell Cycle. 2009; 8(23):3806-8. DOI: 10.4161/cc.8.23.10423. View

5.
Canduri F, Perez P, Caceres R, Filgueira de Azevedo Jr W . CDK9 a potential target for drug development. Med Chem. 2008; 4(3):210-8. DOI: 10.2174/157340608784325205. View