» Articles » PMID: 27720645

SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2016 Oct 11
PMID 27720645
Citations 97
Authors
Affiliations
Soon will be listed here.
Abstract

RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.

Citing Articles

An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions.

Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F Nat Commun. 2025; 16(1):2325.

PMID: 40057470 PMC: 11890761. DOI: 10.1038/s41467-025-57671-3.


catGRANULE 2.0: accurate predictions of liquid-liquid phase separating proteins at single amino acid resolution.

Monti M, Fiorentino J, Miltiadis-Vrachnos D, Bini G, Cotrufo T, Sanchez de Groot N Genome Biol. 2025; 26(1):33.

PMID: 39979996 PMC: 11843755. DOI: 10.1186/s13059-025-03497-7.


Aberrant splicing in Huntington's disease accompanies disrupted TDP-43 activity and altered m6A RNA modification.

Nguyen T, Miramontes R, Chillon-Marinas C, Maimon R, Vazquez-Sanchez S, Lau A Nat Neurosci. 2025; 28(2):280-292.

PMID: 39762660 PMC: 11802453. DOI: 10.1038/s41593-024-01850-w.


An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions.

Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F bioRxiv. 2024; .

PMID: 39386702 PMC: 11463612. DOI: 10.1101/2024.09.25.614981.


Integrated multi-omics analysis of zinc-finger proteins uncovers roles in RNA regulation.

Gosztyla M, Zhan L, Olson S, Wei X, Naritomi J, Nguyen G Mol Cell. 2024; 84(19):3826-3842.e8.

PMID: 39303722 PMC: 11633308. DOI: 10.1016/j.molcel.2024.08.010.


References
1.
Hein M, Hubner N, Poser I, Cox J, Nagaraj N, Toyoda Y . A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015; 163(3):712-23. DOI: 10.1016/j.cell.2015.09.053. View

2.
Gerstberger S, Hafner M, Tuschl T . A census of human RNA-binding proteins. Nat Rev Genet. 2014; 15(12):829-45. PMC: 11148870. DOI: 10.1038/nrg3813. View

3.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B, Strein C . Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012; 149(6):1393-406. DOI: 10.1016/j.cell.2012.04.031. View

4.
Lukong K, Chang K, Khandjian E, Richard S . RNA-binding proteins in human genetic disease. Trends Genet. 2008; 24(8):416-25. DOI: 10.1016/j.tig.2008.05.004. View

5.
Tsvetanova N, Klass D, Salzman J, Brown P . Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One. 2010; 5(9). PMC: 2937035. DOI: 10.1371/journal.pone.0012671. View