» Articles » PMID: 27622333

Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation

Abstract

More than 80% of patients with the refractory anemia with ring sideroblasts subtype of myelodysplastic syndrome (MDS) have mutations in Splicing Factor 3B, Subunit 1 (SF3B1). We generated a conditional knockin mouse model of the most common SF3B1 mutation, Sf3b1(K700E). Sf3b1(K700E) mice develop macrocytic anemia due to a terminal erythroid maturation defect, erythroid dysplasia, and long-term hematopoietic stem cell (LT-HSC) expansion. Sf3b1(K700E) myeloid progenitors and SF3B1-mutant MDS patient samples demonstrate aberrant 3' splice-site selection associated with increased nonsense-mediated decay. Tet2 loss cooperates with Sf3b1(K700E) to cause a more severe erythroid and LT-HSC phenotype. Furthermore, the spliceosome modulator, E7017, selectively kills SF3B1(K700E)-expressing cells. Thus, SF3B1(K700E) expression reflects the phenotype of the mutation in MDS and may be a therapeutic target in MDS.

Citing Articles

SUGP1 loss is the sole driver of SF3B1 hotspot mutant missplicing in cancer.

Xing P, Bak-Gordon P, Xie J, Zhang J, Liu Z, Manley J bioRxiv. 2025; .

PMID: 40027711 PMC: 11870612. DOI: 10.1101/2025.02.17.638713.


RNA-binding proteins as therapeutic targets in cancer.

Jungfleisch J, Gebauer F RNA Biol. 2025; 22(1):1-8.

PMID: 40016176 PMC: 11869776. DOI: 10.1080/15476286.2025.2470511.


Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects.

Leclair N, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola B Nat Commun. 2025; 16(1):1670.

PMID: 39955311 PMC: 11829967. DOI: 10.1038/s41467-025-56913-8.


Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy.

Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S Front Immunol. 2025; 15():1490035.

PMID: 39845971 PMC: 11752881. DOI: 10.3389/fimmu.2024.1490035.


SF3B1 thermostability as an assay for splicing inhibitor interactions.

Amorello A, Chandrashekar Reddy G, Melillo B, Cravatt B, Ghosh A, Jurica M J Biol Chem. 2024; 301(2):108135.

PMID: 39725033 PMC: 11791315. DOI: 10.1016/j.jbc.2024.108135.


References
1.
Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L . Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013; 121(8):e43-9. PMC: 3578961. DOI: 10.1182/blood-2012-09-456079. View

2.
Vardiman J, Lee Harris N, Brunning R . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 100(7):2292-302. DOI: 10.1182/blood-2002-04-1199. View

3.
Matsunawa M, Yamamoto R, Sanada M, Sato-Otsubo A, Shiozawa Y, Yoshida K . Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia. Leukemia. 2014; 28(9):1844-50. DOI: 10.1038/leu.2014.73. View

4.
Visconte V, Rogers H, Singh J, Barnard J, Bupathi M, Traina F . SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012; 120(16):3173-86. PMC: 3476536. DOI: 10.1182/blood-2012-05-430876. View

5.
Beachy S, Aplan P . Mouse models of myelodysplastic syndromes. Hematol Oncol Clin North Am. 2010; 24(2):361-75. PMC: 2848962. DOI: 10.1016/j.hoc.2010.02.002. View