» Articles » PMID: 27479907

Distinct Genetic Architectures for Syndromic and Nonsyndromic Congenital Heart Defects Identified by Exome Sequencing

Abstract

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.

Citing Articles

Two distinct phenotypes in Snijders Blok-Campeau syndrome and characterization of the behavioral phenotype in a zebrafish model.

Enomoto Y, Shiromizu T, Yasojima S, Koiwa J, Kuroda Y, Ito H Eur J Hum Genet. 2025; .

PMID: 39988727 DOI: 10.1038/s41431-025-01815-y.


Meta-analysis reveals transcription factors and DNA binding domain variants associated with congenital heart defect and orofacial cleft.

Jeong R, Bulyk M medRxiv. 2025; .

PMID: 39974057 PMC: 11838631. DOI: 10.1101/2025.01.30.25321274.


Genetic impact of copy number variations on congenital heart defects: Current insights and future directions.

Krishnamurthy N, Krishna D, Sanjana , Rathinasamy J, Kumar A, Francis A Glob Med Genet. 2025; 12(1):100008.

PMID: 39925442 PMC: 11800308. DOI: 10.1016/j.gmg.2024.100008.


Chromosomal analysis and short-term outcome of prenatally diagnosed congenital heart disease.

Verbeke M, Hannes L, Devriendt K, Van den Bogaert K, Cools B, De Catte L Sci Rep. 2025; 15(1):3923.

PMID: 39890866 PMC: 11785992. DOI: 10.1038/s41598-025-88570-8.


Discovery of a DNA methylation profile in individuals with Sifrim-Hitz-Weiss syndrome.

Karimi K, Lichtenstein Y, Reilly J, McConkey H, Relator R, Levy M Am J Hum Genet. 2025; 112(2):414-427.

PMID: 39824190 PMC: 11866970. DOI: 10.1016/j.ajhg.2024.12.020.


References
1.
Shaheen R, Al Hashem A, Alghamdi M, Seidahmad M, Wakil S, Dagriri K . Positional mapping of PRKD1, NRP1 and PRDM1 as novel candidate disease genes in truncus arteriosus. J Med Genet. 2015; 52(5):322-9. DOI: 10.1136/jmedgenet-2015-102992. View

2.
Breuer K, Foroushani A, Laird M, Chen C, Sribnaia A, Lo R . InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res. 2012; 41(Database issue):D1228-33. PMC: 3531080. DOI: 10.1093/nar/gks1147. View

3.
Li Y, Klena N, Gabriel G, Liu X, Kim A, Lemke K . Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015; 521(7553):520-4. PMC: 4617540. DOI: 10.1038/nature14269. View

4.
Oyen N, Poulsen G, Boyd H, Wohlfahrt J, Jensen P, Melbye M . Recurrence of congenital heart defects in families. Circulation. 2009; 120(4):295-301. DOI: 10.1161/CIRCULATIONAHA.109.857987. View

5.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297-303. PMC: 2928508. DOI: 10.1101/gr.107524.110. View