Senn K, Hoskins A
Wiley Interdiscip Rev RNA. 2024; 15(4):e1866.
PMID: 38972853
PMC: 11585973.
DOI: 10.1002/wrna.1866.
Roy K, Gabunilas J, Neutel D, Ai M, Yeh Z, Samson J
Nucleic Acids Res. 2023; 51(22):12428-12442.
PMID: 37956322
PMC: 10711555.
DOI: 10.1093/nar/gkad968.
Salzberg L, Martos A, Lombardi L, Jermiin L, Blanco A, Byrne K
PLoS Genet. 2022; 18(11):e1010525.
PMID: 36441813
PMC: 9731477.
DOI: 10.1371/journal.pgen.1010525.
Li R, Deed R
G3 (Bethesda). 2021; 11(4).
PMID: 33681985
PMC: 8759811.
DOI: 10.1093/g3journal/jkab061.
Menees T
Mol Genet Genomics. 2021; 296(2):409-422.
PMID: 33464395
DOI: 10.1007/s00438-020-01753-y.
Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo.
Mendoza-Ochoa G, Barrass J, Maudlin I, Beggs J
RNA Biol. 2019; 16(12):1775-1784.
PMID: 31671032
PMC: 6844569.
DOI: 10.1080/15476286.2019.1657788.
Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome.
Talkish J, Igel H, Perriman R, Shiue L, Katzman S, Munding E
PLoS Genet. 2019; 15(8):e1008249.
PMID: 31437148
PMC: 6726248.
DOI: 10.1371/journal.pgen.1008249.
Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae.
Hansen S, Nikolai B, Spreacker P, Carrocci T, Hoskins A
Cell Chem Biol. 2019; 26(3):443-448.e3.
PMID: 30639260
PMC: 6430687.
DOI: 10.1016/j.chembiol.2018.11.008.
Pre-mRNA modifications and their role in nuclear processing.
Martinez N, Gilbert W
Quant Biol. 2018; 6(3):210-227.
PMID: 30533247
PMC: 6284822.
DOI: 10.1007/s40484-018-0147-4.
PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in .
Kanno T, Venhuizen P, Wen T, Lin W, Chiou P, Kalyna M
Genetics. 2018; 210(4):1267-1285.
PMID: 30297453
PMC: 6283158.
DOI: 10.1534/genetics.118.301515.
A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
Paggi J, Bejerano G
RNA. 2018; 24(12):1647-1658.
PMID: 30224349
PMC: 6239175.
DOI: 10.1261/rna.066290.118.
Tracing the Origin of Protein-Coding Genes in Yeast.
Wu B, Knudson A
mBio. 2018; 9(4).
PMID: 30065088
PMC: 6069113.
DOI: 10.1128/mBio.01024-18.
Functional analysis of Hsh155/SF3b1 interactions with the U2 snRNA/branch site duplex.
Carrocci T, Paulson J, Hoskins A
RNA. 2018; 24(8):1028-1040.
PMID: 29752352
PMC: 6049509.
DOI: 10.1261/rna.065664.118.
Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
Aslanzadeh V, Huang Y, Sanguinetti G, Beggs J
Genome Res. 2017; 28(2):203-213.
PMID: 29254943
PMC: 5793784.
DOI: 10.1101/gr.225615.117.
Splicing and transcription touch base: co-transcriptional spliceosome assembly and function.
Herzel L, Ottoz D, Alpert T, Neugebauer K
Nat Rev Mol Cell Biol. 2017; 18(10):637-650.
PMID: 28792005
PMC: 5928008.
DOI: 10.1038/nrm.2017.63.
Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency.
Mayerle M, Raghavan M, Ledoux S, Price A, Stepankiw N, Hadjivassiliou H
Proc Natl Acad Sci U S A. 2017; 114(18):4739-4744.
PMID: 28416677
PMC: 5422793.
DOI: 10.1073/pnas.1701462114.
A genetic screen implicates a CWC16/Yju2/CCDC130 protein and SMU1 in alternative splicing in .
Kanno T, Lin W, Fu J, Matzke A, Matzke M
RNA. 2017; 23(7):1068-1079.
PMID: 28373290
PMC: 5473141.
DOI: 10.1261/rna.060517.116.
Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.
Wallace E, Beggs J
RNA. 2017; 23(5):601-610.
PMID: 28153948
PMC: 5393171.
DOI: 10.1261/rna.060830.117.
Large-scale analysis of branchpoint usage across species and cell lines.
Taggart A, Lin C, Shrestha B, Heintzelman C, Kim S, Fairbrother W
Genome Res. 2017; 27(4):639-649.
PMID: 28119336
PMC: 5378181.
DOI: 10.1101/gr.202820.115.
SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast.
Carrocci T, Zoerner D, Paulson J, Hoskins A
Nucleic Acids Res. 2017; 45(8):4837-4852.
PMID: 28062854
PMC: 5416834.
DOI: 10.1093/nar/gkw1349.