» Articles » PMID: 27410030

Pleiotropic Genes Affecting Carcass Traits in Bos Indicus (Nellore) Cattle Are Modulators of Growth

Abstract

Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

Citing Articles

Body weight and measurement traits of Brahman cattle affected by pleomorphic adenoma gene 1 variations.

Trilaksono B, Rodhiyah A, Yanti Y, Riyanto J, Kurniawan H, Imron M Open Vet J. 2025; 14(12):3248-3256.

PMID: 39927368 PMC: 11799629. DOI: 10.5455/OVJ.2024.v14.i12.10.


Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits.

Mota L, Santos S, Fernandes Junior G, Bresolin T, Mercadante M, Silva J BMC Genomics. 2022; 23(1):424.

PMID: 35672696 PMC: 9172108. DOI: 10.1186/s12864-022-08671-w.


Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Cattle.

Tahir M, Porto-Neto L, Gondro C, Shittu O, Wockner K, Tan A Genes (Basel). 2021; 12(5).

PMID: 34069992 PMC: 8157873. DOI: 10.3390/genes12050768.


Selection signatures of Fuzhong Buffalo based on whole-genome sequences.

Sun T, Huang G, Wang Z, Teng S, Cao Y, Sun J BMC Genomics. 2020; 21(1):674.

PMID: 32993537 PMC: 7526191. DOI: 10.1186/s12864-020-07095-8.


Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color.

Senczuk G, Guerra L, Mastrangelo S, Campobasso C, Zoubeyda K, Imane M Genes (Basel). 2020; 11(8).

PMID: 32823527 PMC: 7464420. DOI: 10.3390/genes11080932.


References
1.
Karim L, Takeda H, Lin L, Druet T, Arias J, Baurain D . Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet. 2011; 43(5):405-13. DOI: 10.1038/ng.814. View

2.
Keady S, Kenny D, Ohlendieck K, Doyle S, Keane M, Waters S . Proteomic profiling of bovine M. longissimus lumborum from Crossbred Aberdeen Angus and Belgian Blue sired steers varying in genetic merit for carcass weight. J Anim Sci. 2013; 91(2):654-65. DOI: 10.2527/jas.2012-5850. View

3.
Yang J, Zaitlen N, Goddard M, Visscher P, Price A . Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014; 46(2):100-6. PMC: 3989144. DOI: 10.1038/ng.2876. View

4.
Utsunomiya Y, Carmo A, Carvalheiro R, Neves H, Matos M, Zavarez L . Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet. 2013; 14:52. PMC: 3683327. DOI: 10.1186/1471-2156-14-52. View

5.
Aulchenko Y, Ripke S, Isaacs A, Van Duijn C . GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007; 23(10):1294-6. DOI: 10.1093/bioinformatics/btm108. View