» Articles » PMID: 25367038

Target RNA Capture and Cleavage by the Cmr Type III-B CRISPR-Cas Effector Complex

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2014 Nov 5
PMID 25367038
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

The effector complex of the Cmr/type III-B CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) system cleaves RNAs recognized by the CRISPR RNA (crRNA) of the complex and includes six protein subunits of unknown functions. Using reconstituted Pyrococcus furiosus Cmr complexes, we found that each of the six Cmr proteins plays a critical role in either crRNA interaction or target RNA capture. Cmr2, Cmr3, Cmr4, and Cmr5 are all required for formation of a crRNA-containing complex detected by native gel electrophoresis, and the conserved 5' repeat sequence tag and 5'-OH group of the crRNA are essential for the interaction. Interestingly, capture of the complementary target RNA additionally requires both Cmr1 and Cmr6. In detailed functional studies, we determined that P. furiosus Cmr complexes cleave target RNAs at 6-nucleotide (nt) intervals in the region of complementarity, beginning 5 nt downstream from the crRNA tag and continuing to within ∼14 nt of the 3' end of the crRNA. Our findings indicate that Cmr3 recognizes the signature crRNA tag sequence (and depends on protein-protein interactions with Cmr2, Cmr4, and Cmr5), each Cmr4 subunit mediates a target RNA cleavage, and Cmr1 and Cmr6 mediate an essential interaction between the 3' region of the crRNA and the target RNA.

Citing Articles

The influence of the copy number of invader on the fate of bacterial host cells in the antiviral defense by CRISPR-Cas10 DNases.

Yu Z, Xu J, Zhang Y, She Q Eng Microbiol. 2024; 3(4):100102.

PMID: 39628911 PMC: 11610955. DOI: 10.1016/j.engmic.2023.100102.


Selective degradation of phage RNAs by the Csm6 ribonuclease provides robust type III CRISPR immunity in Streptococcus thermophilus.

Johnson K, Garrett S, Noble-Molnar C, Elgarhi H, Woodside W, Cooper C Nucleic Acids Res. 2024; 52(20):12549-12564.

PMID: 39360614 PMC: 11551762. DOI: 10.1093/nar/gkae856.


The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.

Binder S, Schneberger N, Schmitz M, Engeser M, Geyer M, Rouillon C Nucleic Acids Res. 2024; 52(17):10520-10532.

PMID: 39166476 PMC: 11417357. DOI: 10.1093/nar/gkae676.


Editing microbes to mitigate enteric methane emissions in livestock.

Khan F, Ali A, Wu D, Huang C, Zulfiqar H, Ali M World J Microbiol Biotechnol. 2024; 40(10):300.

PMID: 39134917 DOI: 10.1007/s11274-024-04103-x.


RNA targeting and cleavage by the type III-Dv CRISPR effector complex.

Schwartz E, Bravo J, Ahsan M, Macias L, McCafferty C, Dangerfield T Nat Commun. 2024; 15(1):3324.

PMID: 38637512 PMC: 11026444. DOI: 10.1038/s41467-024-47506-y.


References
1.
Terns M, Terns R . CRISPR-based adaptive immune systems. Curr Opin Microbiol. 2011; 14(3):321-7. PMC: 3119747. DOI: 10.1016/j.mib.2011.03.005. View

2.
Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, Gong W . Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature. 2014; 515(7525):147-50. DOI: 10.1038/nature13733. View

3.
Reeks J, Graham S, Anderson L, Liu H, White M, Naismith J . Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes. RNA Biol. 2013; 10(5):762-9. PMC: 3737334. DOI: 10.4161/rna.23854. View

4.
Pourcel C, Salvignol G, Vergnaud G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005; 151(Pt 3):653-663. DOI: 10.1099/mic.0.27437-0. View

5.
Huo Y, Nam K, Ding F, Lee H, Wu L, Xiao Y . Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol. 2014; 21(9):771-7. PMC: 4156918. DOI: 10.1038/nsmb.2875. View