» Articles » PMID: 27174932

MoRFchibi SYSTEM: Software Tools for the Identification of MoRFs in Protein Sequences

Overview
Specialty Biochemistry
Date 2016 May 14
PMID 27174932
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/.

Citing Articles

Evaluation of predictions of disordered binding regions in the CAID2 experiment.

Zhang F, Kurgan L Comput Struct Biotechnol J. 2025; 27():78-88.

PMID: 39811792 PMC: 11732247. DOI: 10.1016/j.csbj.2024.12.009.


Accurate Prediction of Protein-Binding Residues in Protein Sequences Using SCRIBER.

Zhang J, Zhou F, Liang X, Kurgan L Methods Mol Biol. 2024; 2867:247-260.

PMID: 39576586 DOI: 10.1007/978-1-0716-4196-5_15.


DescribePROT Database of Residue-Level Protein Structure and Function Annotations.

Zhao B, Basu S, Kurgan L Methods Mol Biol. 2024; 2867:169-184.

PMID: 39576581 DOI: 10.1007/978-1-0716-4196-5_10.


SeqDance: A Protein Language Model for Representing Protein Dynamic Properties.

Hou C, Shen Y bioRxiv. 2024; .

PMID: 39464109 PMC: 11507661. DOI: 10.1101/2024.10.11.617911.


iDLB-Pred: identification of disordered lipid binding residues in protein sequences using convolutional neural network.

Malebary S, Alromema N Sci Rep. 2024; 14(1):24724.

PMID: 39433833 PMC: 11494137. DOI: 10.1038/s41598-024-75700-x.


References
1.
Peng Z, Kurgan L . High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res. 2015; 43(18):e121. PMC: 4605291. DOI: 10.1093/nar/gkv585. View

2.
Babu M, van der Lee R, Sanchez de Groot N, Gsponer J . Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol. 2011; 21(3):432-40. DOI: 10.1016/j.sbi.2011.03.011. View

3.
Cheng Y, Oldfield C, Meng J, Romero P, Uversky V, Dunker A . Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry. 2007; 46(47):13468-77. PMC: 2570644. DOI: 10.1021/bi7012273. View

4.
Meszaros B, Tompa P, Simon I, Dosztanyi Z . Molecular principles of the interactions of disordered proteins. J Mol Biol. 2007; 372(2):549-61. DOI: 10.1016/j.jmb.2007.07.004. View

5.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H . The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42. PMC: 102472. DOI: 10.1093/nar/28.1.235. View