» Articles » PMID: 27117253

Identification of GPR83 As the Receptor for the Neuroendocrine Peptide PEN

Overview
Journal Sci Signal
Date 2016 Apr 28
PMID 27117253
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

PEN is an abundant peptide in the brain that has been implicated in the regulation of feeding. We identified a receptor for PEN in mouse hypothalamus and Neuro2A cells. PEN bound to and activated GPR83, a G protein (heterotrimeric guanine nucleotide)-binding protein)-coupled receptor (GPCR). Reduction of GPR83 expression in mouse brain and Neuro2A cells reduced PEN binding and signaling, consistent with GPR83 functioning as the major receptor for PEN. In some brain regions, GPR83 colocalized with GPR171, a GPCR that binds the neuropeptide bigLEN, another neuropeptide that is involved in feeding and is generated from the same precursor protein as is PEN. Coexpression of these two receptors in cell lines altered the signaling properties of each receptor, suggesting a functional interaction. Our data established PEN as a neuropeptide that binds GPR83 and suggested that these two ligand-receptor systems-PEN-GPR83 and bigLEN-GPR171-may be functionally coupled in the regulation of feeding.

Citing Articles

GPCRs: emerging targets for novel T cell immune checkpoint therapy.

Dickinson K, Yee E, Vigil I, Schulick R, Zhu Y Cancer Immunol Immunother. 2024; 73(12):253.

PMID: 39358616 PMC: 11447192. DOI: 10.1007/s00262-024-03801-7.


Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors.

Gomes I, Gupta A, Margolis E, Fricker L, Devi L Mol Pharmacol. 2024; 106(5):240-252.

PMID: 39187388 PMC: 11493337. DOI: 10.1124/molpharm.124.000947.


Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones.

Gupta A, Gomes I, Osman A, Fujita W, Devi L J Pharmacol Exp Ther. 2024; 391(2):279-288.

PMID: 39103231 PMC: 11493451. DOI: 10.1124/jpet.124.002187.


Gz Enhanced Signal Transduction assaY (GESTY) for GPCR deorphanization.

Franchini L, Porter J, Lueck J, Orlandi C bioRxiv. 2024; .

PMID: 39091869 PMC: 11291178. DOI: 10.1101/2024.07.26.605282.


Exploring orphan GPCRs in neurodegenerative diseases.

Oz-Arslan D, Yavuz M, Kan B Front Pharmacol. 2024; 15:1394516.

PMID: 38895631 PMC: 11183337. DOI: 10.3389/fphar.2024.1394516.


References
1.
Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A . Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006; 445(7124):168-76. DOI: 10.1038/nature05453. View

2.
Zhang X, Pan H, Peng B, Steiner D, Pintar J, Fricker L . Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J Neurochem. 2009; 112(5):1168-79. PMC: 2901178. DOI: 10.1111/j.1471-4159.2009.06530.x. View

3.
Wardman J, Zhang X, Gagnon S, Castro L, Zhu X, Steiner D . Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J Neurochem. 2010; 114(1):215-25. PMC: 2897930. DOI: 10.1111/j.1471-4159.2010.06760.x. View

4.
E Vollmer L, Ghosal S, A Rush J, R Sallee F, Herman J, Weinert M . Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor-deficient mice. Genes Brain Behav. 2012; 12(2):241-9. PMC: 3581710. DOI: 10.1111/j.1601-183X.2012.00867.x. View

5.
Lindberg I, Yang H . Distribution of Met5-enkephalin-Arg6-Gly7-Leu8-immunoreactive peptides in rat brain: presence of multiple molecular forms. Brain Res. 1984; 299(1):73-8. DOI: 10.1016/0006-8993(84)90789-3. View