» Articles » PMID: 27087895

Bioconverted Jeju Hallabong Tangor (Citrus Kiyomi × Ponkan) Peel Extracts by Cytolase Enhance Antioxidant and Anti-inflammatory Capacity in RAW 264.7 Cells

Overview
Journal Nutr Res Pract
Date 2016 Apr 19
PMID 27087895
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Background/objectives: Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi × ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells.

Materials/methods: Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or 200 µg/ml of citrus peel extracts for 4 h, followed by stimulation with 1 µg/ml lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin E2 (PGE2) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively.

Results: HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and PGE2 production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only 200 µg/ml of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and 200 µg/ml of CKP-C notably inhibited mRNA levels of interleukin-1β (IL-1β) and IL-6, whereas 200 µg/ml CKP-C significantly inhibited mRNA levels of TNF-α.

Conclusions: This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones of citrus peels and provide more potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by increasing radical scavenging activity and suppressing pro-inflammatory mediators and cytokines.

Citing Articles

Effect of Natural Variation and Rootstock on Fruit Quality and Volatile Organic Compounds of '' ( Blanco) Citrus.

Wang T, Zheng Z, Deng L, Li W, Yuan Y, Zhang M Int J Mol Sci. 2023; 24(23).

PMID: 38069133 PMC: 10706780. DOI: 10.3390/ijms242316810.


The anti-obesity effect of mulberry leaf (Mori Folium) extracts was increased by bioconversion with Pectinex.

Han J, Lee H, Jung S, Cho C, Kim T, Kang J Sci Rep. 2022; 12(1):20375.

PMID: 36437256 PMC: 9701790. DOI: 10.1038/s41598-022-23856-9.


Addition of Orange Peel in Orange Jam: Evaluation of Sensory, Physicochemical, and Nutritional Characteristics.

Teixeira F, Santos B, Nunes G, Soares J, do Amaral L, Souza G Molecules. 2020; 25(7).

PMID: 32260369 PMC: 7180482. DOI: 10.3390/molecules25071670.


Investigation of the cause of reduced sugar content in Kiyomi tangor fruit of Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) rootstock.

Dong T, Xiong B, Huang S, Liao L, Qiu X, Sun G Sci Rep. 2019; 9(1):19263.

PMID: 31848437 PMC: 6917820. DOI: 10.1038/s41598-019-55957-3.


Bioconverted Orostachys japonicas Extracts Suppress Angiogenic Activity of Ms-1 Endothelial Cells.

Lee S, Kim J, Lee H, Lim Y, So J, Hahn D Int J Mol Sci. 2017; 18(12).

PMID: 29206202 PMC: 5751218. DOI: 10.3390/ijms18122615.

References
1.
Higashi-Okai K, Kamimoto K, Yoshioka A, Okai Y . Potent suppressive activity of fresh and dried peels from Satsuma mandarin Citrus unshiu (Marcorv.) on hydroperoxide generation from oxidized linoleic acid. Phytother Res. 2002; 16(8):781-4. DOI: 10.1002/ptr.1067. View

2.
Zamora R, Vodovotz Y, Billiar T . Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000; 6(5):347-73. PMC: 1949959. View

3.
Fuhr U, Kummert A . The fate of naringin in humans: a key to grapefruit juice-drug interactions?. Clin Pharmacol Ther. 1995; 58(4):365-73. DOI: 10.1016/0009-9236(95)90048-9. View

4.
Kim H, Jeon W, Ko B . Flavanone glycosides from Citrus junos and their anti-influenza virus activity. Planta Med. 2001; 67(6):548-9. DOI: 10.1055/s-2001-16484. View

5.
Blancke F, Claeys M, Jorens P, Vermeiren G, Bosmans J, Wuyts F . Systemic inflammation and reperfusion injury in patients with acute myocardial infarction. Mediators Inflamm. 2006; 2005(6):385-9. PMC: 1533902. DOI: 10.1155/MI.2005.385. View