» Articles » PMID: 27052461

Large-scale Production of Megakaryocytes from Human Pluripotent Stem Cells by Chemically Defined Forward Programming

Abstract

The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.

Citing Articles

Uniform impact on individual megakaryocytes is essential for efficient in vitro platelet production.

Garzon Dasgupta A, Pongerard A, Mallo L, Eckly A, Lanza F, Boiron O Sci Rep. 2025; 15(1):1809.

PMID: 39805910 PMC: 11730292. DOI: 10.1038/s41598-024-79949-0.


Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells.

Chen C, Wang N, Zhang X, Fu Y, Zhong Z, Wu H Stem Cell Res Ther. 2024; 15(1):454.

PMID: 39609933 PMC: 11603724. DOI: 10.1186/s13287-024-04071-x.


Platelet Storage-Problems, Improvements, and New Perspectives.

Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K Int J Mol Sci. 2024; 25(14).

PMID: 39063021 PMC: 11277025. DOI: 10.3390/ijms25147779.


Engineering pluripotent stem cells with synthetic biology for regenerative medicine.

Mao Y, Wang S, Yu J, Li W Med Rev (2021). 2024; 4(2):90-109.

PMID: 38680679 PMC: 11046572. DOI: 10.1515/mr-2023-0050.


Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage.

Feely C, Kaushal N, DAvino P, Martin J Front Pharmacol. 2024; 15:1343896.

PMID: 38562457 PMC: 10982340. DOI: 10.3389/fphar.2024.1343896.


References
1.
Albers C, Cvejic A, Favier R, Bouwmans E, Alessi M, Bertone P . Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet. 2011; 43(8):735-7. PMC: 3428934. DOI: 10.1038/ng.885. View

2.
Bernardo A, Faial T, Gardner L, Niakan K, Ortmann D, Senner C . BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell. 2011; 9(2):144-55. PMC: 3567433. DOI: 10.1016/j.stem.2011.06.015. View

3.
Liu Z, Sola-Visner M . Neonatal and adult megakaryopoiesis. Curr Opin Hematol. 2011; 18(5):330-7. DOI: 10.1097/MOH.0b013e3283497ed5. View

4.
Newman P, Aster R, Boylan B . Human platelets circulating in mice: applications for interrogating platelet function and survival, the efficacy of antiplatelet therapeutics, and the molecular basis of platelet immunological disorders. J Thromb Haemost. 2007; 5 Suppl 1:305-9. DOI: 10.1111/j.1538-7836.2007.02466.x. View

5.
Stroncek D, Rebulla P . Platelet transfusions. Lancet. 2007; 370(9585):427-38. DOI: 10.1016/S0140-6736(07)61198-2. View