» Articles » PMID: 27019691

Light-driven Biocatalytic Reduction of α,β-unsaturated Compounds by Ene Reductases Employing Transition Metal Complexes As Photosensitizers

Overview
Date 2016 Mar 29
PMID 27019691
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient and cost effective nicotinamide cofactor regeneration is essential for industrial-scale bio-hydrogenations employing flavin-containing biocatalysts such as the Old Yellow Enzymes. A direct flavin regeneration system using visible light to initiate a photoredox cycle and drive biocatalysis is described, and shown to be effective in driving biocatalytic activated alkene reduction. Using Ru(ii) or Ir(iii) complexes as photosensitizers, coupled with an electron transfer mediator (methyl viologen) and sacrificial electron donor (triethanolamine) drives catalytic turnover of two Old Yellow Enzymes with multiple oxidative substrates. Therefore, there is great potential in the development of light-driven biocatalytic systems, providing an alternative to the reliance on enzyme-based cofactor regeneration systems.

Citing Articles

Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light.

Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y Nanomaterials (Basel). 2023; 13(15).

PMID: 37570577 PMC: 10421452. DOI: 10.3390/nano13152260.


Photobiocatalytic Strategies for Organic Synthesis.

Emmanuel M, Bender S, Bilodeau C, Carceller J, DeHovitz J, Fu H Chem Rev. 2023; 123(9):5459-5520.

PMID: 37115521 PMC: 10905417. DOI: 10.1021/acs.chemrev.2c00767.


Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light.

Feyza Ozgen F, Runda M, Schmidt S Chembiochem. 2020; 22(5):790-806.

PMID: 32961020 PMC: 7983893. DOI: 10.1002/cbic.202000587.


Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration.

Tosstorff A, Kroner C, Opperman D, Hollmann F, Holtmann D Eng Life Sci. 2020; 17(1):71-76.

PMID: 32624730 PMC: 6999263. DOI: 10.1002/elsc.201600158.


Biocatalytic Reduction Reactions from a Chemist's Perspective.

Hollmann F, Opperman D, Paul C Angew Chem Int Ed Engl. 2020; 60(11):5644-5665.

PMID: 32330347 PMC: 7983917. DOI: 10.1002/anie.202001876.


References
1.
Toogood H, Fryszkowska A, Hare V, Fisher K, Roujeinikova A, Leys D . Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of alpha,beta-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase. Adv Synth Catal. 2010; 350(17):2789-2803. PMC: 2854801. DOI: 10.1002/adsc.200800561. View

2.
Brand S, Rajagukguk S, Ganesan K, Geren L, Fabian M, Han D . A new ruthenium complex to study single-electron reduction of the pulsed O(H) state of detergent-solubilized cytochrome oxidase. Biochemistry. 2007; 46(50):14610-8. DOI: 10.1021/bi701424d. View

3.
Reisner E, Fontecilla-Camps J, Armstrong F . Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem Commun (Camb). 2009; (5):550-2. DOI: 10.1039/b817371k. View

4.
Coe B, Helliwell M, Sanchez S, Peers M, Scrutton N . Water-soluble Ir(iii) complexes of deprotonated N-methylbipyridinium ligands: fluorine-free blue emitters. Dalton Trans. 2015; 44(35):15420-3. DOI: 10.1039/c5dt02591e. View

5.
Coe B, Helliwell M, Raftery J, Sanchez S, Peers M, Scrutton N . Cyclometalated Ir(III) complexes of deprotonated N-methylbipyridinium ligands: effects of quaternised N centre position on luminescence. Dalton Trans. 2015; 44(47):20392-405. DOI: 10.1039/c5dt03753k. View