» Articles » PMID: 26820547

Editing the Epigenome: Technologies for Programmable Transcription and Epigenetic Modulation

Overview
Journal Nat Methods
Date 2016 Jan 29
PMID 26820547
Citations 213
Authors
Affiliations
Soon will be listed here.
Abstract

Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.

Citing Articles

Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation.

Fu Y, Yang X, Li S, Ma C, An Y, Cheng T Nat Commun. 2025; 16(1):1640.

PMID: 39952932 PMC: 11828908. DOI: 10.1038/s41467-025-56735-8.


Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing.

Rohm D, Black J, McCutcheon S, Barrera A, Berry S, Morone D Cell Genom. 2025; 5(2):100770.

PMID: 39947136 PMC: 11872474. DOI: 10.1016/j.xgen.2025.100770.


mRNA Transcript Variants Expressed in Mammalian Cells.

Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields P Int J Mol Sci. 2025; 26(3).

PMID: 39940824 PMC: 11817330. DOI: 10.3390/ijms26031052.


Chemical catalyst manipulating cancer epigenome and transcription.

Yamanashi Y, Takamaru S, Okabe A, Kaito S, Azumaya Y, Kamimura Y Nat Commun. 2025; 16(1):887.

PMID: 39856033 PMC: 11760346. DOI: 10.1038/s41467-025-56204-2.


Epigenetics in the modern era of crop improvements.

Xue Y, Cao X, Chen X, Deng X, Deng X, Ding Y Sci China Life Sci. 2025; .

PMID: 39808224 DOI: 10.1007/s11427-024-2784-3.


References
1.
Heintzman N, Stuart R, Hon G, Fu Y, Ching C, Hawkins R . Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007; 39(3):311-8. DOI: 10.1038/ng1966. View

2.
Yokoi K, Zhang H, Kachi S, Balaggan K, Yu Q, Guschin D . Gene transfer of an engineered zinc finger protein enhances the anti-angiogenic defense system. Mol Ther. 2007; 15(11):1917-23. DOI: 10.1038/sj.mt.6300280. View

3.
Bernstein D, Le Lay J, Ruano E, Kaestner K . TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest. 2015; 125(5):1998-2006. PMC: 4463192. DOI: 10.1172/JCI77321. View

4.
Peters A, Kubicek S, Mechtler K, OSullivan R, Derijck A, Perez-Burgos L . Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003; 12(6):1577-89. DOI: 10.1016/s1097-2765(03)00477-5. View

5.
Polstein L, Gersbach C . Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc. 2012; 134(40):16480-3. PMC: 3468123. DOI: 10.1021/ja3065667. View