» Articles » PMID: 26600467

Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging

Overview
Journal PLoS One
Date 2015 Nov 25
PMID 26600467
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Three-dimensional (3D) localization-based super-resolution microscopy (SR) requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE) at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

Citing Articles

Adaptive optics in super-resolution microscopy.

Wang J, Zhang Y Biophys Rep. 2023; 7(4):267-279.

PMID: 37287764 PMC: 10233472. DOI: 10.52601/bpr.2021.210015.


Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate.

Bonin K, Prasad S, Caulkins W, Holzwarth G, Baker S, Vidi P J Biomed Opt. 2023; 27(12):126501.

PMID: 36590978 PMC: 9799159. DOI: 10.1117/1.JBO.27.12.126501.


A basal-level activity of ATR links replication fork surveillance and stress response.

Yin Y, Lee W, Gupta D, Xue H, Tonzi P, Borowiec J Mol Cell. 2021; 81(20):4243-4257.e6.

PMID: 34473946 PMC: 8541912. DOI: 10.1016/j.molcel.2021.08.009.


Accurate localization microscopy by intrinsic aberration calibration.

Copeland C, McGray C, Ilic B, Geist J, Stavis S Nat Commun. 2021; 12(1):3925.

PMID: 34168121 PMC: 8225824. DOI: 10.1038/s41467-021-23419-y.


Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging.

Zhang Y, Schroeder L, Lessard M, Kidd P, Chung J, Song Y Nat Methods. 2020; 17(2):225-231.

PMID: 31907447 PMC: 7028321. DOI: 10.1038/s41592-019-0676-4.


References
1.
Rieger B, Stallinga S . The lateral and axial localization uncertainty in super-resolution light microscopy. Chemphyschem. 2013; 15(4):664-70. DOI: 10.1002/cphc.201300711. View

2.
Enderlein J, Toprak E, Selvin P . Polarization effect on position accuracy of fluorophore localization. Opt Express. 2009; 14(18):8111-20. DOI: 10.1364/oe.14.008111. View

3.
Kopek B, Shtengel G, Xu C, Clayton D, Hess H . Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A. 2012; 109(16):6136-41. PMC: 3341004. DOI: 10.1073/pnas.1121558109. View

4.
Lupini A, de Jonge N . The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal. 2011; 17(5):817-26. PMC: 3390684. DOI: 10.1017/S1431927611011913. View

5.
McGorty R, Schnitzbauer J, Zhang W, Huang B . Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt Lett. 2014; 39(2):275-8. PMC: 4030053. DOI: 10.1364/OL.39.000275. View