» Articles » PMID: 26403244

Transposable Elements and G-quadruplexes

Overview
Journal Chromosome Res
Date 2015 Sep 26
PMID 26403244
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

Citing Articles

Chronic RNA G-quadruplex accumulation in aging and Alzheimer's disease.

Kallweit L, Hamlett E, Saternos H, Gilmore A, Granholm A, Horowitz S Elife. 2025; 14.

PMID: 39992714 PMC: 11850002. DOI: 10.7554/eLife.105446.


Non-canonical DNA in human and other ape telomere-to-telomere genomes.

Smeds L, Kamali K, Kejnovska I, Kejnovsky E, Chiaromonte F, Makova K bioRxiv. 2024; .

PMID: 39713403 PMC: 11661062. DOI: 10.1101/2024.09.02.610891.


Chronic RNA G-quadruplex Accumulation in Aging and Alzheimer's Disease.

Kallweit L, Hamlett E, Hamlett E, Saternos H, Gilmore A, Granholm A bioRxiv. 2023; .

PMID: 37873355 PMC: 10592952. DOI: 10.1101/2023.10.02.560545.


Noncanonical DNA structures are drivers of genome evolution.

Makova K, Weissensteiner M Trends Genet. 2023; 39(2):109-124.

PMID: 36604282 PMC: 9877202. DOI: 10.1016/j.tig.2022.11.005.


Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes.

Liu Q, Yi C, Zhang Z, Su H, Liu C, Huang Y Proc Natl Acad Sci U S A. 2022; 120(1):e2211683120.

PMID: 36574697 PMC: 9910436. DOI: 10.1073/pnas.2211683120.


References
1.
Beaudoin J, Perreault J . Exploring mRNA 3'-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res. 2013; 41(11):5898-911. PMC: 3675481. DOI: 10.1093/nar/gkt265. View

2.
Pearson C, Sinden R . Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol. 1998; 8(3):321-30. DOI: 10.1016/s0959-440x(98)80065-1. View

3.
Abad J, Villasante A . The 3' non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett. 1999; 453(1-2):59-62. DOI: 10.1016/s0014-5793(99)00695-x. View

4.
Lever A, Gottlinger H, Haseltine W, Sodroski J . Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol. 1989; 63(9):4085-7. PMC: 251012. DOI: 10.1128/JVI.63.9.4085-4087.1989. View

5.
Bochman M, Paeschke K, Zakian V . DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13(11):770-80. PMC: 3725559. DOI: 10.1038/nrg3296. View