» Articles » PMID: 26387737

Parkin Regulates Mitosis and Genomic Stability Through Cdc20/Cdh1

Abstract

Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.

Citing Articles

CDC20-Mediated Selective Autophagy Degradation of PBRM1 Affects Immunotherapy for Renal Cell Carcinoma.

Fan Y, Dan W, Que T, Wei Y, Liu B, Wang Z Adv Sci (Weinh). 2024; 12(5):e2412967.

PMID: 39656940 PMC: 11791976. DOI: 10.1002/advs.202412967.


Exploring the Blood Biomarkers and Potential Therapeutic Agents for Human Acute Mountain Sickness Based on Transcriptomic Analysis, Inflammatory Infiltrates and Molecular Docking.

Yan J, Zhang Z, Ge Y, Chen J, Gao Y, Zhang B Int J Mol Sci. 2024; 25(20).

PMID: 39457093 PMC: 11508554. DOI: 10.3390/ijms252011311.


The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity.

Sun X, Ye G, Li J, Yuan L, Bai G, Xu Y Oncogene. 2024; 43(44):3215-3226.

PMID: 39285229 DOI: 10.1038/s41388-024-03157-3.


Parkin activates innate immunity and promotes antitumor immune responses.

Perego M, Yeon M, Agarwal E, Milcarek A, Bertolini I, Camisaschi C J Clin Invest. 2024; 134(22.

PMID: 39213189 PMC: 11563675. DOI: 10.1172/JCI180983.


Deficiency in the mitophagy mediator Parkin accelerates murine skin allograft rejection.

Wragg K, Worley M, Deng J, Salmon M, Goldstein D Am J Transplant. 2024; 24(12):2174-2186.

PMID: 39142471 PMC: 11588513. DOI: 10.1016/j.ajt.2024.08.005.


References
1.
Wang H, Song P, Du L, Tian W, Yue W, Liu M . Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem. 2011; 286(13):11649-58. PMC: 3064217. DOI: 10.1074/jbc.M110.144238. View

2.
Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M . Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem. 2013; 288(30):22019-32. PMC: 3724655. DOI: 10.1074/jbc.M113.467530. View

3.
Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X . GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008; 7(9):1598-608. PMC: 2528073. DOI: 10.1074/mcp.M700574-MCP200. View

4.
Kim H, Vassilopoulos A, Wang R, Lahusen T, Xiao Z, Xu X . SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011; 20(4):487-99. PMC: 3199577. DOI: 10.1016/j.ccr.2011.09.004. View

5.
Nagahama H, Minamishima Y, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M . Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000; 19(9):2069-81. PMC: 305685. DOI: 10.1093/emboj/19.9.2069. View