» Articles » PMID: 26309748

Measuring Oxygen Saturation in Retinal and Choroidal Circulations in Rats Using Visible Light Optical Coherence Tomography Angiography

Overview
Specialty Radiology
Date 2015 Aug 27
PMID 26309748
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Visible light optical coherence tomography (vis-OCT) has demonstrated its capability of measuring vascular oxygen saturation (sO2) in vivo. Enhanced by OCT angiography, the signal from microvasculature can be further isolated and directly used for sO2 extraction. In this work, we extended the theoretical formulation for OCT angiography-based oximetry by incorporating the contribution from motion contrast enhancement. We presented a new method to eliminate the associated confounding variables due to blood flow. First, we performed in vitro experiments to verify our theory, showing a stable spectral derivative within the selected wavelength bands for sO2 extraction. Then, we tested our method in vivo to measure retinal sO2 in rats inhaling different gas mixtures: normal air, 5% CO2, pure O2, and 10% O2. Absolute sO2 values in major arterioles and venules in the retinal circulation can be accurately measured. In addition, we demonstrated the relative changes of sO2 can be measured non-invasively from choriocapillaris immediately underneath the retinal pigmented epithelium (RPE) in rodents.

Citing Articles

Fusing multispectral information for retinal layer segmentation.

He X, Wu F, Hu K, Cui L, Song W, Wan Y NPJ Digit Med. 2025; 8(1):39.

PMID: 39825030 PMC: 11742026. DOI: 10.1038/s41746-025-01446-z.


Variations in Retinal Oxygen Saturation in a Diverse Healthy Population.

Bisignano K, Smith J, Harrison W Clin Optom (Auckl). 2024; 16:147-155.

PMID: 39045010 PMC: 11265219. DOI: 10.2147/OPTO.S468076.


Sensitivity of visible range multi-wavelength algorithms for retinal tissue oximetry to acquisition parameters.

Akitegetse C, Poirier J, Sauvageau D Biomed Opt Express. 2023; 14(8):4296-4309.

PMID: 37799705 PMC: 10549742. DOI: 10.1364/BOE.495721.


Multiple forward scattering reduces the measured scattering coefficient of whole blood in visible-light optical coherence tomography.

Fang R, Rubinoff I, Zhang H Biomed Opt Express. 2022; 13(9):4510-4527.

PMID: 36187273 PMC: 9484418. DOI: 10.1364/BOE.459607.


Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis.

Taylor-Williams M, Spicer G, Bale G, Bohndiek S J Biomed Opt. 2022; 27(8).

PMID: 35922891 PMC: 9346606. DOI: 10.1117/1.JBO.27.8.080901.


References
1.
Wangsa-Wirawan N, Linsenmeier R . Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol. 2003; 121(4):547-57. DOI: 10.1001/archopht.121.4.547. View

2.
Faber D, Mik E, Aalders M, van Leeuwen T . Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett. 2005; 30(9):1015-7. DOI: 10.1364/ol.30.001015. View

3.
Robles F, Chowdhury S, Wax A . Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomed Opt Express. 2011; 1(1):310-317. PMC: 3005160. DOI: 10.1364/boe.1.000310/. View

4.
Lu C, Lee C, Tsai M, Wang Y, Yang C . Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Opt Lett. 2008; 33(5):416-8. DOI: 10.1364/ol.33.000416. View

5.
Zhi Z, Cepurna W, Johnson E, Shen T, Morrison J, Wang R . Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography. Biomed Opt Express. 2011; 2(3):579-91. PMC: 3047363. DOI: 10.1364/BOE.2.000579. View