» Articles » PMID: 35187398

Advances in Multimodal Imaging in Ophthalmology

Overview
Specialty Ophthalmology
Date 2022 Feb 21
PMID 35187398
Authors
Affiliations
Soon will be listed here.
Abstract

Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.

Citing Articles

Interpretation of Clinical Retinal Images Using an Artificial Intelligence Chatbot.

Mihalache A, Huang R, Mikhail D, Popovic M, Shor R, Pereira A Ophthalmol Sci. 2024; 4(6):100556.

PMID: 39139542 PMC: 11321281. DOI: 10.1016/j.xops.2024.100556.


Editorial: The role of multi-modal imaging in improving refractive cataract surgery and the understanding of retinal disease.

Wang X, Huang J, Kanclerz P, Khoramnia R, Wang Z Front Med (Lausanne). 2024; 11:1426880.

PMID: 38835800 PMC: 11148422. DOI: 10.3389/fmed.2024.1426880.


AI as a Medical Device for Ophthalmic Imaging in Europe, Australia, and the United States: Protocol for a Systematic Scoping Review of Regulated Devices.

Ong A, Hogg H, Kale A, Taribagil P, Kras A, Dow E JMIR Res Protoc. 2024; 13:e52602.

PMID: 38483456 PMC: 10979335. DOI: 10.2196/52602.


A New Generation of Gene Therapies as the Future of Wet AMD Treatment.

Blasiak J, Pawlowska E, Ciupinska J, Derwich M, Szczepanska J, Kaarniranta K Int J Mol Sci. 2024; 25(4).

PMID: 38397064 PMC: 10888617. DOI: 10.3390/ijms25042386.


Retinal Changes in Parkinson's Disease: A Non-invasive Biomarker for Early Diagnosis.

Subramaniam M, Aishwarya Janaki P, Abishek Kumar B, Gopalarethinam J, Nair A, Mahalaxmi I Cell Mol Neurobiol. 2023; 43(8):3983-3996.

PMID: 37831228 PMC: 11407726. DOI: 10.1007/s10571-023-01419-4.


References
1.
Polans J, Keller B, Carrasco-Zevallos O, LaRocca F, Cole E, Whitson H . Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions. Biomed Opt Express. 2017; 8(1):16-37. PMC: 5231289. DOI: 10.1364/BOE.8.000016. View

2.
Singh M, Li J, Vantipalli S, Wang S, Han Z, Nair A . Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking. IEEE J Sel Top Quantum Electron. 2016; 22(3). PMC: 4990138. DOI: 10.1109/JSTQE.2015.2510293. View

3.
Zhang P, Zam A, Jian Y, Wang X, Li Y, Lam K . In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature. J Biomed Opt. 2015; 20(12):126005. PMC: 4681314. DOI: 10.1117/1.JBO.20.12.126005. View

4.
Wei X, Hormel T, Guo Y, Hwang T, Jia Y . High-resolution wide-field OCT angiography with a self-navigation method to correct microsaccades and blinks. Biomed Opt Express. 2020; 11(6):3234-3245. PMC: 7316026. DOI: 10.1364/BOE.390430. View

5.
Russell J, Shi Y, Hinkle J, Scott N, Fan K, Lyu C . Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation. Ophthalmol Retina. 2019; 3(4):350-361. PMC: 6482856. DOI: 10.1016/j.oret.2018.11.008. View