» Articles » PMID: 30839641

Single Capillary Oximetry and Tissue Ultrastructural Sensing by Dual-band Dual-scan Inverse Spectroscopic Optical Coherence Tomography

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2019 Mar 7
PMID 30839641
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Measuring capillary oxygenation and the surrounding ultrastructure can allow one to monitor a microvascular niche and better understand crucial biological mechanisms. However, capillary oximetry and pericapillary ultrastructure are challenging to measure in vivo. Here we demonstrate a novel optical imaging system, dual-band dual-scan inverse spectroscopic optical coherence tomography (D2-ISOCT), that, for the first time, can simultaneously obtain the following metrics in vivo using endogenous contrast: (1) capillary-level oxygen saturation and arteriolar-level blood flow rates, oxygen delivery rates, and oxygen metabolic rates; (2) spatial characteristics of tissue structures at length scales down to 30 nm; and (3) morphological images up to 2 mm in depth. To illustrate the capabilities of D2-ISOCT, we monitored alterations to capillaries and the surrounding pericapillary tissue (tissue between the capillaries) in the healing response of a mouse ear wound model. The obtained microvascular and ultrastructural metrics corroborated well with each other, showing the promise of D2-ISOCT for becoming a powerful new non-invasive imaging tool.

Citing Articles

Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends.

Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V Cancers (Basel). 2024; 16(13).

PMID: 39001546 PMC: 11240380. DOI: 10.3390/cancers16132484.


Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis.

Taylor-Williams M, Spicer G, Bale G, Bohndiek S J Biomed Opt. 2022; 27(8).

PMID: 35922891 PMC: 9346606. DOI: 10.1117/1.JBO.27.8.080901.


Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing.

Seeger M, Dehner C, Justel D, Ntziachristos V Commun Biol. 2021; 4(1):1040.

PMID: 34489513 PMC: 8421396. DOI: 10.1038/s42003-021-02573-5.


Origins of subdiffractional contrast in optical coherence tomography.

Eid A, Winkelmann J, Eshein A, Taflove A, Backman V Biomed Opt Express. 2021; 12(6):3630-3642.

PMID: 34221684 PMC: 8221934. DOI: 10.1364/BOE.416572.


Optical density based quantification of total haemoglobin concentrations with spectroscopic optical coherence tomography.

Cuartas-Velez C, Veenstra C, Kruitwagen S, Petersen W, Bosschaart N Sci Rep. 2021; 11(1):8680.

PMID: 33883617 PMC: 8060256. DOI: 10.1038/s41598-021-88063-4.


References
1.
Singer A, Clark R . Cutaneous wound healing. N Engl J Med. 1999; 341(10):738-46. DOI: 10.1056/NEJM199909023411006. View

2.
Vajkoczy P, Ullrich A, Menger M . Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia. 2000; 2(1-2):53-61. PMC: 1531866. DOI: 10.1038/sj.neo.7900062. View

3.
Ingber D . Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 2002; 91(10):877-87. DOI: 10.1161/01.res.0000039537.73816.e5. View

4.
Gabbiani G . The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003; 200(4):500-3. DOI: 10.1002/path.1427. View

5.
Faber D, Mik E, Aalders M, van Leeuwen T . Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett. 2003; 28(16):1436-8. DOI: 10.1364/ol.28.001436. View