» Articles » PMID: 26013497

AMPK Activation Promotes Lipid Droplet Dispersion on Detyrosinated Microtubules to Increase Mitochondrial Fatty Acid Oxidation

Overview
Journal Nat Commun
Specialty Biology
Date 2015 May 28
PMID 26013497
Citations 136
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD-mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.

Citing Articles

Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites.

Bezawork-Geleta A, Devereux C, Keenan S, Lou J, Cho E, Nie S Nat Commun. 2025; 16(1):2135.

PMID: 40032835 PMC: 11876333. DOI: 10.1038/s41467-025-57405-5.


Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies.

Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C Cell Commun Signal. 2025; 23(1):89.

PMID: 39955542 PMC: 11830217. DOI: 10.1186/s12964-025-02089-z.


Autophagic flux-lipid droplet biogenesis cascade sustains mitochondrial fitness in colorectal cancer cells adapted to acidosis.

Liu X, Sun X, Mu W, Li Y, Bu W, Yang T Cell Death Discov. 2025; 11(1):21.

PMID: 39856069 PMC: 11761495. DOI: 10.1038/s41420-025-02301-6.


Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases.

Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W J Neuroinflammation. 2025; 22(1):7.

PMID: 39806503 PMC: 11730833. DOI: 10.1186/s12974-025-03334-5.


Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress.

Gu X, Lu S, Xu S, Li Y, Fan M, Lin G Genes Dis. 2025; 12(2):101292.

PMID: 39759112 PMC: 11697116. DOI: 10.1016/j.gendis.2024.101292.


References
1.
Aon M, Bhatt N, Cortassa S . Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol. 2014; 5:282. PMC: 4116787. DOI: 10.3389/fphys.2014.00282. View

2.
Jones R, Plas D, Kubek S, Buzzai M, Mu J, Xu Y . AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005; 18(3):283-93. DOI: 10.1016/j.molcel.2005.03.027. View

3.
Cabodevilla A, Sanchez-Caballero L, Nintou E, Boiadjieva V, Picatoste F, Gubern A . Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids. J Biol Chem. 2013; 288(39):27777-88. PMC: 3784694. DOI: 10.1074/jbc.M113.466656. View

4.
Kaul N, Soppina V, Verhey K . Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J. 2014; 106(12):2636-43. PMC: 4070028. DOI: 10.1016/j.bpj.2014.05.008. View

5.
Herms A, Bosch M, Ariotti N, Reddy B, Fajardo A, Fernandez-Vidal A . Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr Biol. 2013; 23(15):1489-96. PMC: 3746173. DOI: 10.1016/j.cub.2013.06.032. View