» Articles » PMID: 25942454

Chromosome Mis-segregation and Cytokinesis Failure in Trisomic Human Cells

Overview
Journal Elife
Specialty Biology
Date 2015 May 6
PMID 25942454
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome.

Citing Articles

Recent insights into the causes and consequences of chromosome mis-segregation.

Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S Oncogene. 2024; 43(43):3139-3150.

PMID: 39278989 DOI: 10.1038/s41388-024-03163-5.


Origins of cancer: ain't it just mature cells misbehaving?.

Cho C, Brown J, Mills J EMBO J. 2024; 43(13):2530-2551.

PMID: 38773319 PMC: 11217308. DOI: 10.1038/s44318-024-00099-0.


The two sides of chromosomal instability: drivers and brakes in cancer.

Hosea R, Hillary S, Naqvi S, Wu S, Kasim V Signal Transduct Target Ther. 2024; 9(1):75.

PMID: 38553459 PMC: 10980778. DOI: 10.1038/s41392-024-01767-7.


Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns.

Watson E, Lee J, Gulhan D, Melloni G, Venev S, Magesh R Nat Genet. 2024; 56(5):900-912.

PMID: 38388848 PMC: 11096114. DOI: 10.1038/s41588-024-01665-2.


Chromosome instability and aneuploidy in the mammalian brain.

Albert O, Sun S, Huttner A, Zhang Z, Suh Y, Campisi J Chromosome Res. 2023; 31(4):32.

PMID: 37910282 PMC: 10833588. DOI: 10.1007/s10577-023-09740-w.


References
1.
Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K . Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer. 1996; 15(4):234-45. DOI: 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2. View

2.
Selmecki A, Dulmage K, Cowen L, Anderson J, Berman J . Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 2009; 5(10):e1000705. PMC: 2760147. DOI: 10.1371/journal.pgen.1000705. View

3.
Gao C, Furge K, Koeman J, Dykema K, Su Y, Cutler M . Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proc Natl Acad Sci U S A. 2007; 104(21):8995-9000. PMC: 1885616. DOI: 10.1073/pnas.0700631104. View

4.
Carter S, Eklund A, Kohane I, Harris L, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006; 38(9):1043-8. DOI: 10.1038/ng1861. View

5.
Bakhoum S, Silkworth W, Nardi I, Nicholson J, Compton D, Cimini D . The mitotic origin of chromosomal instability. Curr Biol. 2014; 24(4):R148-9. PMC: 3970164. DOI: 10.1016/j.cub.2014.01.019. View