» Articles » PMID: 25680065

Hyperspectral Time-resolved Wide-field Fluorescence Molecular Tomography Based on Structured Light and Single-pixel Detection

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2015 Feb 14
PMID 25680065
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

We present a time-resolved fluorescence diffuse optical tomography platform that is based on wide-field structured illumination, single-pixel detection, and hyperspectral acquisition. Two spatial light modulators (digital micro-mirror devices) are employed to generate independently wide-field illumination and detection patterns, coupled with a 16-channel spectrophotometer detection module to capture hyperspectral time-resolved tomographic data sets. The main system characteristics are reported, and we demonstrate the feasibility of acquiring dense 4D tomographic data sets (space, time, spectra) for time domain 3D quantitative multiplexed fluorophore concentration mapping in turbid media.

Citing Articles

A time-correlated single photon counting SPAD array camera with a bespoke data-processing algorithm for lightsheet fluorescence lifetime imaging (FLIM) and FLIM videos.

Nedbal J, Mattioli Della Rocca F, Ivanova I, Allan A, Graham J, Walker R Sci Rep. 2024; 14(1):7247.

PMID: 38538638 PMC: 10973459. DOI: 10.1038/s41598-024-56122-1.


Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions.

Nizam N, Ochoa M, Smith J, Intes X Biomed Opt Express. 2023; 14(3):1041-1053.

PMID: 36950248 PMC: 10026582. DOI: 10.1364/BOE.480091.


Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications.

Nizam N, Ochoa M, Smith J, Gao S, Intes X J Biomed Opt. 2022; 27(8).

PMID: 35484688 PMC: 9048385. DOI: 10.1117/1.JBO.27.8.083016.


Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement.

Ochoa M, Rudkouskaya A, Smith J, Intes X, Barroso M Methods Mol Biol. 2022; 2394:837-856.

PMID: 35094361 PMC: 8941982. DOI: 10.1007/978-1-0716-1811-0_44.


Deep Learning in Biomedical Optics.

Tian L, Hunt B, Bell M, Yi J, Smith J, Ochoa M Lasers Surg Med. 2021; 53(6):748-775.

PMID: 34015146 PMC: 8273152. DOI: 10.1002/lsm.23414.


References
1.
Wu J, Perelman L, Dasari R, Feld M . Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms. Proc Natl Acad Sci U S A. 1997; 94(16):8783-8. PMC: 23129. DOI: 10.1073/pnas.94.16.8783. View

2.
Belanger S, Abran M, Intes X, Casanova C, Lesage F . Real-time diffuse optical tomography based on structured illumination. J Biomed Opt. 2010; 15(1):016006. DOI: 10.1117/1.3290818. View

3.
Zacharakis G, Favicchio R, Simantiraki M, Ripoll J . Spectroscopic detection improves multi-color quantification in fluorescence tomography. Biomed Opt Express. 2011; 2(3):431-9. PMC: 3047349. DOI: 10.1364/BOE.2.000431. View

4.
Niedre M, de Kleine R, Aikawa E, Kirsch D, Weissleder R, Ntziachristos V . Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc Natl Acad Sci U S A. 2008; 105(49):19126-31. PMC: 2614726. DOI: 10.1073/pnas.0804798105. View

5.
Venugopal V, Intes X . Adaptive wide-field optical tomography. J Biomed Opt. 2013; 18(3):036006. PMC: 3591745. DOI: 10.1117/1.JBO.18.3.036006. View