» Articles » PMID: 25620325

Quantifying Small Molecule Phenotypic Effects Using Mitochondrial Morpho-functional Fingerprinting and Machine Learning

Overview
Journal Sci Rep
Specialty Science
Date 2015 Jan 27
PMID 25620325
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

Citing Articles

Imaging flow cytometry reveals divergent mitochondrial phenotypes in mitochondrial disease patients.

Muffels I, Rodenburg R, Willemen H, van Haaften-Visser D, Waterham H, Eijkelkamp N iScience. 2025; 28(1):111496.

PMID: 39801833 PMC: 11719857. DOI: 10.1016/j.isci.2024.111496.


Mitochondrial Morphofunctional Profiling in Primary Human Skin Fibroblasts Using TMRM and Mitotracker Green Co-staining.

Bergmans J, van de Westerlo E, Grefte S, Adjobo-Hermans M, Koopman W Methods Mol Biol. 2024; 2878():223-232.

PMID: 39546265 DOI: 10.1007/978-1-0716-4264-1_12.


Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention.

Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A Curr Genomics. 2024; 25(5):358-379.

PMID: 39323625 PMC: 11420563. DOI: 10.2174/0113892029308327240612110334.


Quantitative imaging and semiotic phenotyping of mitochondrial network morphology in live human cells.

Charrasse S, Racine V, Saint-Omer C, Poquillon T, Lionnard L, Ledru M PLoS One. 2024; 19(3):e0301372.

PMID: 38547143 PMC: 10977735. DOI: 10.1371/journal.pone.0301372.


Clinical Approaches for Mitochondrial Diseases.

Hong S, Kim S, Kim K, Lee H Cells. 2023; 12(20).

PMID: 37887337 PMC: 10605124. DOI: 10.3390/cells12202494.


References
1.
Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari B . Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis. 2013; 4:e461. PMC: 3564000. DOI: 10.1038/cddis.2012.213. View

2.
Koopman W, Distelmaier F, Smeitink J, Willems P . OXPHOS mutations and neurodegeneration. EMBO J. 2012; 32(1):9-29. PMC: 3545297. DOI: 10.1038/emboj.2012.300. View

3.
Kerr D . Review of clinical trials for mitochondrial disorders: 1997-2012. Neurotherapeutics. 2013; 10(2):307-19. PMC: 3625388. DOI: 10.1007/s13311-013-0176-7. View

4.
Heyland D, Muscedere J, Wischmeyer P, Cook D, Jones G, Albert M . A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013; 368(16):1489-97. DOI: 10.1056/NEJMoa1212722. View

5.
Bast A, Haenen G . Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013; 34(8):430-6. DOI: 10.1016/j.tips.2013.05.010. View