» Articles » PMID: 25486635

A Cross-polarization Based Rotating-frame Separated-local-field NMR Experiment Under Ultrafast MAS Conditions

Overview
Journal J Magn Reson
Publisher Elsevier
Date 2014 Dec 9
PMID 25486635
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.

Citing Articles

Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications.

Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A Chem Rev. 2022; 123(3):918-988.

PMID: 36542732 PMC: 10319395. DOI: 10.1021/acs.chemrev.2c00197.


H-Detected Biomolecular NMR under Fast Magic-Angle Spinning.

Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell A Chem Rev. 2022; 122(10):9943-10018.

PMID: 35536915 PMC: 9136936. DOI: 10.1021/acs.chemrev.1c00918.


Multivariate Curve Resolution for 2D Solid-State NMR spectra.

Bruno F, Francischello R, Bellomo G, Gigli L, Flori A, Menichetti L Anal Chem. 2020; 92(6):4451-4458.

PMID: 32069028 PMC: 7997113. DOI: 10.1021/acs.analchem.9b05420.


Exploring the salt-cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering.

Rajput L, Banik M, Yarava J, Joseph S, Pandey M, Nishiyama Y IUCrJ. 2017; 4(Pt 4):466-475.

PMID: 28875033 PMC: 5571809. DOI: 10.1107/S205225251700687X.


Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy.

Quinn C, Polenova T Q Rev Biophys. 2017; 50:e1.

PMID: 28093096 PMC: 5483179. DOI: 10.1017/S0033583516000159.


References
1.
Kotecha M, Wickramasinghe N, Ishii Y . Efficient low-power heteronuclear decoupling in 13C high-resolution solid-state NMR under fast magic angle spinning. Magn Reson Chem. 2007; 45 Suppl 1:S221-30. DOI: 10.1002/mrc.2151. View

2.
Weingarth M, Bodenhausen G, Tekely P . Low-power decoupling at high spinning frequencies in high static fields. J Magn Reson. 2009; 199(2):238-41. DOI: 10.1016/j.jmr.2009.04.015. View

3.
Zhou D, Shea J, Nieuwkoop A, Franks W, Wylie B, Mullen C . Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed Engl. 2007; 46(44):8380-3. PMC: 2790053. DOI: 10.1002/anie.200702905. View

4.
Huber M, Hiller S, Schanda P, Ernst M, Bockmann A, Verel R . A proton-detected 4D solid-state NMR experiment for protein structure determination. Chemphyschem. 2011; 12(5):915-8. DOI: 10.1002/cphc.201100062. View

5.
Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A . Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J Magn Reson. 2014; 242:180-8. DOI: 10.1016/j.jmr.2014.02.020. View