» Articles » PMID: 21531607

CRISPR-based Adaptive Immune Systems

Overview
Specialty Microbiology
Date 2011 May 3
PMID 21531607
Citations 213
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediated by largely distinct components and mechanisms that we are only beginning to delineate. Here we will review our current understanding of the remarkable CRISPR-Cas pathways with particular attention to studies relevant to systems found in the archaea.

Citing Articles

Synthetic biology meets Aspergillus: engineering strategies for next-generation organic acid production.

Wu Y, Xu Q, Chen Z, Yang L, Guo D World J Microbiol Biotechnol. 2025; 41(2):36.

PMID: 39800796 DOI: 10.1007/s11274-024-04246-x.


SspA is a transcriptional regulator of CRISPR adaptation in E. coli.

Lopez S, Lee Y, Zhang K, Shipman S Nucleic Acids Res. 2024; 53(4).

PMID: 39727179 PMC: 11879090. DOI: 10.1093/nar/gkae1244.


Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry.

Freko S, Nikic M, Mayer D, Weiss L, Simmel F, Wolfrum B ACS Sens. 2024; 9(11):6197-6206.

PMID: 39435883 PMC: 11590096. DOI: 10.1021/acssensors.4c02060.


Innate and germline immune memory: specificity and heritability of the ancient immune mechanisms for adaptation and survival.

Boraschi D, Toepfer E, Italiani P Front Immunol. 2024; 15:1386578.

PMID: 38903500 PMC: 11186993. DOI: 10.3389/fimmu.2024.1386578.


Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria.

Hu W, Yang J, Wang J, Yuan S, Yue X, Zhang Z mSystems. 2024; 9(6):e0121023.

PMID: 38747603 PMC: 11237760. DOI: 10.1128/msystems.01210-23.


References
1.
Horvath P, Coute-Monvoisin A, Romero D, Boyaval P, Fremaux C, Barrangou R . Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol. 2008; 131(1):62-70. DOI: 10.1016/j.ijfoodmicro.2008.05.030. View

2.
Karginov F, Hannon G . The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell. 2010; 37(1):7-19. PMC: 2819186. DOI: 10.1016/j.molcel.2009.12.033. View

3.
Horvath P, Romero D, Coute-Monvoisin A, Richards M, Deveau H, Moineau S . Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2007; 190(4):1401-12. PMC: 2238196. DOI: 10.1128/JB.01415-07. View

4.
Pourcel C, Salvignol G, Vergnaud G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005; 151(Pt 3):653-663. DOI: 10.1099/mic.0.27437-0. View

5.
Horvath P, Barrangou R . CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962):167-70. DOI: 10.1126/science.1179555. View