» Articles » PMID: 25147920

A CRISPR-based Approach for Proteomic Analysis of a Single Genomic Locus

Overview
Journal Epigenetics
Specialty Genetics
Date 2014 Aug 23
PMID 25147920
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location.

Citing Articles

Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome.

MacKenzie T, Cisneros R, Maynard R, Snyder M Cells. 2023; 12(14).

PMID: 37508524 PMC: 10377898. DOI: 10.3390/cells12141860.


The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation.

Li C, Mori L, Lyu S, Bronson R, Getzler A, Pipkin M Proc Natl Acad Sci U S A. 2022; 120(1):e2217476120.

PMID: 36584296 PMC: 9910500. DOI: 10.1073/pnas.2217476120.


Dissecting Locus-Specific Chromatin Interactions by CRISPR CAPTURE.

Botten G, Lee Jr M, Xu J Methods Mol Biol. 2022; 2599:69-97.

PMID: 36427144 PMC: 10395504. DOI: 10.1007/978-1-0716-2847-8_7.


Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents.

Ne E, Crespo R, Izquierdo-Lara R, Rao S, Kocer S, Gorska A Nucleic Acids Res. 2022; 50(10):5577-5598.

PMID: 35640596 PMC: 9177988. DOI: 10.1093/nar/gkac407.


Applications of CRISPR-Cas Technologies to Proteomics.

Dolgalev G, Poverennaya E Genes (Basel). 2021; 12(11).

PMID: 34828396 PMC: 8625504. DOI: 10.3390/genes12111790.


References
1.
Zybailov B, Mosley A, Sardiu M, Coleman M, Florens L, Washburn M . Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006; 5(9):2339-47. DOI: 10.1021/pr060161n. View

2.
Hamperl S, Brown C, Garea A, Perez-Fernandez J, Bruckmann A, Huber K . Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res. 2013; 42(1):e2. PMC: 3874202. DOI: 10.1093/nar/gkt891. View

3.
Byrum S, Raman A, Taverna S, Tackett A . ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2012; 2(1):198-205. PMC: 3408609. DOI: 10.1016/j.celrep.2012.06.019. View

4.
Dejardin J, Kingston R . Purification of proteins associated with specific genomic Loci. Cell. 2009; 136(1):175-86. PMC: 3395431. DOI: 10.1016/j.cell.2008.11.045. View

5.
Byrum S, Taverna S, Tackett A . Quantitative analysis of histone exchange for transcriptionally active chromatin. J Clin Bioinforma. 2011; 1(1):17. PMC: 3164610. DOI: 10.1186/2043-9113-1-17. View