» Articles » PMID: 24871084

Lung Macrophages "digest" Carbon Nanotubes Using a Superoxide/peroxynitrite Oxidative Pathway

Abstract

In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.

Citing Articles

Biodegradation of Heterogeneous Industrial Multi-Walled Carbon Nanotubes by Pro-Inflammatory Macrophages.

Masyutin A, Tarasova E, Samsonov D, Onishchenko G, Erokhina M Nanomaterials (Basel). 2024; 14(20).

PMID: 39452953 PMC: 11510322. DOI: 10.3390/nano14201616.


Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways.

Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A ACS Nano. 2023; 17(17):16396-16411.

PMID: 37639684 PMC: 10510585. DOI: 10.1021/acsnano.2c11161.


Short-Term Intravenous Administration of Carbon Nano-Onions is Non-Toxic in Female Mice.

Tan Y, Thomsen L, Shrestha N, Camisasca A, Giordani S, Rosengren R Int J Nanomedicine. 2023; 18:3897-3912.

PMID: 37483316 PMC: 10361275. DOI: 10.2147/IJN.S414438.


Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy.

Burkert S, He X, Shurin G, Nefedova Y, Kagan V, Shurin M ACS Appl Nano Mater. 2023; 5(10):13685-13696.

PMID: 36711215 PMC: 9879341. DOI: 10.1021/acsanm.1c03245.


Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment.

Pikula K, Johari S, Golokhvast K Nanomaterials (Basel). 2022; 12(23).

PMID: 36500771 PMC: 9737966. DOI: 10.3390/nano12234149.


References
1.
Kolosnjaj-Tabi J, Hartman K, Boudjemaa S, Ananta J, Morgant G, Szwarc H . In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010; 4(3):1481-92. DOI: 10.1021/nn901573w. View

2.
Badireddy A, Wiesner M, Liu J . Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy. Environ Sci Technol. 2012; 46(18):10081-8. DOI: 10.1021/es204140s. View

3.
Choi H, Shim M, Bangsaruntip S, Dai H . Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc. 2002; 124(31):9058-9. DOI: 10.1021/ja026824t. View

4.
Shvedova A, Kisin E, Porter D, Schulte P, Kagan V, Fadeel B . Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?. Pharmacol Ther. 2008; 121(2):192-204. DOI: 10.1016/j.pharmthera.2008.10.009. View

5.
Cox G, Crossley J, Xing Z . Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol. 1995; 12(2):232-7. DOI: 10.1165/ajrcmb.12.2.7865221. View