» Articles » PMID: 32955853

Mitigation of Carbon Nanotube Neurosensor Induced Transcriptomic and Morphological Changes in Mouse Microglia with Surface Passivation

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2020 Sep 21
PMID 32955853
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Single-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT)-SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells. Next, we introduce a strategy to passivate (GT)-SWCNT nanosensors with PEGylated phospholipids to improve both biocompatibility and dopamine imaging quality. We apply these passivated dopamine nanosensors to image electrically stimulated striatal dopamine release in acute mouse brain slices, and show that slices labeled with passivated nanosensors exhibit higher fluorescence response to dopamine and measure more putative dopamine release sites. Hence, this facile modification to SWCNT-based dopamine probes provides immediate improvements to both biocompatibility and dopamine imaging functionality with an approach that is readily translatable to other SWCNT-based neurotechnologies.

Citing Articles

Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes.

Lee D, Lee J, Kim W, Suh Y, Park J, Kim S Adv Sci (Weinh). 2024; 11(32):e2308915.

PMID: 38932669 PMC: 11348070. DOI: 10.1002/advs.202308915.


Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine Interleukin-6.

Gaikwad P, Rahman N, Parikh R, Crespo J, Cohen Z, Williams R ACS Appl Mater Interfaces. 2024; 16(21):27102-27113.

PMID: 38745465 PMC: 11145596. DOI: 10.1021/acsami.4c02711.


Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials.

Conklin B, Conley B, Hou Y, Chen M, Lee K Adv Drug Deliv Rev. 2022; 192:114636.

PMID: 36481291 PMC: 11829738. DOI: 10.1016/j.addr.2022.114636.


Supervised learning model predicts protein adsorption to carbon nanotubes.

Ouassil N, Pinals R, Del Bonis-ODonnell J, Wang J, Landry M Sci Adv. 2022; 8(1):eabm0898.

PMID: 34995109 PMC: 8741178. DOI: 10.1126/sciadv.abm0898.


Biosensing with Fluorescent Carbon Nanotubes.

Ackermann J, Metternich J, Herbertz S, Kruss S Angew Chem Int Ed Engl. 2022; 61(18):e202112372.

PMID: 34978752 PMC: 9313876. DOI: 10.1002/anie.202112372.


References
1.
Albanese A, Sykes E, Chan W . Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano. 2010; 4(5):2490-3. DOI: 10.1021/nn100776z. View

2.
Beyene A, Delevich K, Yang S, Landry M . New Optical Probes Bring Dopamine to Light. Biochemistry. 2018; 57(45):6379-6381. PMC: 10461758. DOI: 10.1021/acs.biochem.8b00883. View

3.
Long T, Saleh N, Tilton R, Lowry G, Veronesi B . Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006; 40(14):4346-52. DOI: 10.1021/es060589n. View

4.
Bernier L, Bohlen C, York E, Choi H, Kamyabi A, Dissing-Olesen L . Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep. 2019; 27(10):2895-2908.e4. DOI: 10.1016/j.celrep.2019.05.010. View

5.
Schmidt A, Wang X, Zhu Y, Sombers L . Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. ACS Nano. 2013; 7(9):7864-73. DOI: 10.1021/nn402857u. View