6.
Kagan V, Konduru N, Feng W, Allen B, Conroy J, Volkov Y
. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010; 5(5):354-9.
PMC: 6714564.
DOI: 10.1038/nnano.2010.44.
View
7.
Kurynina A, Erokhina M, Makarevich O, Sysoeva V, Lepekha L, Kuznetsov S
. Plasticity of Human THP-1 Cell Phagocytic Activity during Macrophagic Differentiation. Biochemistry (Mosc). 2018; 83(3):200-214.
DOI: 10.1134/S0006297918030021.
View
8.
Allen B, Kotchey G, Chen Y, Yanamala N, Klein-Seetharaman J, Kagan V
. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc. 2009; 131(47):17194-205.
DOI: 10.1021/ja9083623.
View
9.
Bhattacharya K, Sacchetti C, El-Sayed R, Fornara A, Kotchey G, Gaugler J
. Enzymatic 'stripping' and degradation of PEGylated carbon nanotubes. Nanoscale. 2014; 6(24):14686-90.
DOI: 10.1039/c4nr03604b.
View
10.
Masyutin A, Bagrov D, Vlasova I, Nikishin I, Klinov D, Sychevskaya K
. Wall Thickness of Industrial Multi-Walled Carbon Nanotubes Is Not a Crucial Factor for Their Degradation by Sodium Hypochlorite. Nanomaterials (Basel). 2018; 8(9).
PMC: 6164318.
DOI: 10.3390/nano8090715.
View
11.
Weiss S
. Tissue destruction by neutrophils. N Engl J Med. 1989; 320(6):365-76.
DOI: 10.1056/NEJM198902093200606.
View
12.
Murphy F, Poland C, Duffin R, Al-Jamal K, Ali-Boucetta H, Nunes A
. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol. 2011; 178(6):2587-600.
PMC: 3124020.
DOI: 10.1016/j.ajpath.2011.02.040.
View
13.
Elgrabli D, Dachraoui W, Marmier H, Menard-Moyon C, Begin D, Begin-Colin S
. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Sci Rep. 2017; 7:40997.
PMC: 5264386.
DOI: 10.1038/srep40997.
View
14.
Elgrabli D, Dachraoui W, Menard-Moyon C, Jie Liu X, Begin D, Begin-Colin S
. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano. 2015; 9(10):10113-24.
DOI: 10.1021/acsnano.5b03708.
View
15.
Landry M, Pinault M, Tchankouo S, Charon E, Ridoux A, Boczkowski J
. Early signs of multi-walled carbon nanotbues degradation in macrophages, via an intracellular pH-dependent biological mechanism; importance of length and functionalization. Part Fibre Toxicol. 2016; 13(1):61.
PMC: 5122009.
DOI: 10.1186/s12989-016-0175-z.
View
16.
Morgan D, Cherny V, Murphy R, Katz B, DeCoursey T
. The pH dependence of NADPH oxidase in human eosinophils. J Physiol. 2005; 569(Pt 2):419-31.
PMC: 1464255.
DOI: 10.1113/jphysiol.2005.094748.
View
17.
Vlasova I, Vakhrusheva T, Sokolov A, Kostevich V, Gusev A, Gusev S
. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol Appl Pharmacol. 2012; 264(1):131-42.
DOI: 10.1016/j.taap.2012.07.027.
View
18.
Ding Y, Tian R, Yang Z, Chen J, Lu N
. NADPH oxidase-dependent degradation of single-walled carbon nanotubes in macrophages. J Mater Sci Mater Med. 2016; 28(1):7.
DOI: 10.1007/s10856-016-5817-z.
View
19.
Andon F, Kapralov A, Yanamala N, Feng W, Baygan A, Chambers B
. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013; 9(16):2721-9, 2720.
PMC: 4039041.
DOI: 10.1002/smll.201202508.
View
20.
Lam T, Brennan-Minnella A, Won S, Shen Y, Hefner C, Shi Y
. Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase. Proc Natl Acad Sci U S A. 2013; 110(46):E4362-8.
PMC: 3832003.
DOI: 10.1073/pnas.1313029110.
View