» Articles » PMID: 24867941

MIPgen: Optimized Modeling and Design of Molecular Inversion Probes for Targeted Resequencing

Overview
Journal Bioinformatics
Specialty Biology
Date 2014 May 29
PMID 24867941
Citations 84
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable in silico predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting.

Availability And Implementation: MIPgen is implemented in C++. Source code and accompanying Python scripts are available at http://shendurelab.github.io/MIPGEN/.

Citing Articles

Utilizing insights of DNA repair machinery to discover MMEJ deletions and novel mechanisms.

Kadam A, Shilo S, Naor H, Wainstein A, Brilon Y, Feldman T Nucleic Acids Res. 2024; 52(22):e106.

PMID: 39607705 PMC: 11662932. DOI: 10.1093/nar/gkae1132.


Noninvasive Stool RNA Test Approximates Disease Activity in Patients With Crohn's Disease.

Ghannam R, Barnell E, Osman A, Roberts R, Donohue P, King S Gastro Hep Adv. 2024; 3(8):1079-1086.

PMID: 39529640 PMC: 11550734. DOI: 10.1016/j.gastha.2024.07.012.


A Case-Control Study Supports Genetic Contribution of the Gene Family in Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease.

Van Dijck E, Diels S, Fransen E, Cremers T, Verrijken A, Dirinck E Antioxidants (Basel). 2024; 13(9).

PMID: 39334710 PMC: 11440101. DOI: 10.3390/antiox13091051.


IMPRESS: Improved methylation profiling using restriction enzymes and smMIP sequencing, combined with a new biomarker panel, creating a multi-cancer detection assay.

Vandenhoeck J, Neefs I, Vanpoucke T, Ibrahim J, Suls A, Peeters D Br J Cancer. 2024; 131(7):1224-1236.

PMID: 39181941 PMC: 11442765. DOI: 10.1038/s41416-024-02809-1.


Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk.

Shin T, Song J, Kosicki M, Kenny C, Beck S, Kelley L Cell Genom. 2024; 4(8):100609.

PMID: 39019033 PMC: 11406188. DOI: 10.1016/j.xgen.2024.100609.


References
1.
Allen A, Cossette P, Delanty N, Eichler E, Goldstein D, Han Y . De novo mutations in epileptic encephalopathies. Nature. 2013; 501(7466):217-21. PMC: 3773011. DOI: 10.1038/nature12439. View

2.
Vissers L, de Ligt J, Gilissen C, Janssen I, Steehouwer M, De Vries P . A de novo paradigm for mental retardation. Nat Genet. 2010; 42(12):1109-12. DOI: 10.1038/ng.712. View

3.
Nuttle X, Huddleston J, ORoak B, Antonacci F, Fichera M, Romano C . Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions. Nat Methods. 2013; 10(9):903-9. PMC: 3985568. DOI: 10.1038/nmeth.2572. View

4.
Li J, Gao Y, Aach J, Zhang K, Kryukov G, Xie B . Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res. 2009; 19(9):1606-15. PMC: 2752131. DOI: 10.1101/gr.092213.109. View

5.
Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton J . De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013; 498(7453):220-3. PMC: 3706629. DOI: 10.1038/nature12141. View