» Articles » PMID: 24696165

Increased Expression of MicroRNA-29a in ALS Mice: Functional Analysis of Its Inhibition

Overview
Journal J Mol Neurosci
Date 2014 Apr 4
PMID 24696165
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Endoplasmic reticulum (ER) stress has been implicated in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). MicroRNAs are small ribonucleic acids which can modulate protein expression by binding to the 3'UTR of target mRNAs. We recently identified increased miR-29a expression in response to ER stress in neurons, with members of the miR-29 family implicated in cancer and neurodegeneration. We found high expression of miR-29a in the mouse brain and spinal cord by quantitative PCR analysis and increased expression of miR-29a in the spinal cord of SOD1(G93A) transgenic mice, a mouse model of familial ALS. In situ hybridisation experiments revealed increased miR-29a expression in the lumbar spinal cord of SOD1(G93A) transgenic mice from postnatal day 70 onward when compared to wild-type mice. miR-29a knockdown was achieved in the CNS in vivo after a single intracerebroventricular injection of a miR-29a-specific antagomir. While analysis of disease progression and motor function could not identify a significant alteration in ALS disease manifestations, a trend towards increased lifespan was observed in male SOD1(G93A) mice. These findings demonstrate that miR-29a may act as a marker for disease progression in SOD1(G93A) mice, and provide first proof-of-concept for a therapeutic modulation of miR-29a function in ALS.

Citing Articles

Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis.

Wang R, Chen L, Zhang Y, Sun B, Liang M Life (Basel). 2024; 14(9).

PMID: 39337908 PMC: 11433357. DOI: 10.3390/life14091125.


The role of MicroRNAs as fine-tuners in the onset of puberty: a comprehensive review.

Jeong H, Hwang I Ann Pediatr Endocrinol Metab. 2024; 29(4):211-219.

PMID: 39231482 PMC: 11374517. DOI: 10.6065/apem.2346238.119.


Mechanism of motoneuronal and pyramidal cell death in amyotrophic lateral sclerosis and its potential therapeutic modulation.

Nogradi B, Nogradi-Halmi D, Erdelyi-Furka B, Kadar Z, Csont T, Gaspar R Cell Death Discov. 2024; 10(1):291.

PMID: 38898006 PMC: 11187107. DOI: 10.1038/s41420-024-02055-7.


Lowering Hippocampal miR-29a Expression Slows Cognitive Decline and Reduces Beta-Amyloid Deposition in 5×FAD Mice.

Mei Z, Liu J, Schroeder J, Weinshenker D, Duong D, Seyfried N Mol Neurobiol. 2023; 61(6):3343-3356.

PMID: 37989983 PMC: 11087195. DOI: 10.1007/s12035-023-03791-0.


Recent Advances in the Roles of MicroRNA and MicroRNA-Based Diagnosis in Neurodegenerative Diseases.

Zhang J, Chen Z, Chen H, Deng Y, Li S, Jin L Biosensors (Basel). 2022; 12(12).

PMID: 36551041 PMC: 9776063. DOI: 10.3390/bios12121074.


References
1.
Renton A, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs J . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72(2):257-68. PMC: 3200438. DOI: 10.1016/j.neuron.2011.09.010. View

2.
Williams K, Fifita J, Vucic S, Durnall J, Kiernan M, Blair I . Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry. 2013; 84(8):931-5. DOI: 10.1136/jnnp-2012-304529. View

3.
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S . Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012; 3(1):1. PMC: 3306207. DOI: 10.1186/1758-907X-3-1. View

4.
Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K . Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2010; 82(6):623-7. DOI: 10.1136/jnnp.2010.224501. View

5.
Janssens J, Van Broeckhoven C . Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet. 2013; 22(R1):R77-87. PMC: 3782069. DOI: 10.1093/hmg/ddt349. View