» Articles » PMID: 24631838

A Diverse Array of Cancer-associated MTOR Mutations Are Hyperactivating and Can Predict Rapamycin Sensitivity

Overview
Journal Cancer Discov
Specialty Oncology
Date 2014 Mar 18
PMID 24631838
Citations 249
Authors
Affiliations
Soon will be listed here.
Abstract

Genes encoding components of the PI3K-AKT-mTOR signaling axis are frequently mutated in cancer, but few mutations have been characterized in MTOR, the gene encoding the mTOR kinase. Using publicly available tumor genome sequencing data, we generated a comprehensive catalog of mTOR pathway mutations in cancer, identifying 33 MTOR mutations that confer pathway hyperactivation. The mutations cluster in six distinct regions in the C-terminal half of mTOR and occur in multiple cancer types, with one cluster particularly prominent in kidney cancer. The activating mutations do not affect mTOR complex assembly, but a subset reduces binding to the mTOR inhibitor DEPTOR. mTOR complex 1 (mTORC1) signaling in cells expressing various activating mutations remains sensitive to pharmacologic mTOR inhibition, but is partially resistant to nutrient deprivation. Finally, cancer cell lines with hyperactivating MTOR mutations display heightened sensitivity to rapamycin both in culture and in vivo xenografts, suggesting that such mutations confer mTOR pathway dependency.

Citing Articles

Old drugs, new challenges: reassigning drugs for cancer therapies.

Czechowicz P, Wiech-Walow A, Slawski J, Collawn J, Bartoszewski R Cell Mol Biol Lett. 2025; 30(1):27.

PMID: 40038587 PMC: 11881393. DOI: 10.1186/s11658-025-00710-0.


Differential somatic coding variant landscapes between laser microdissected luminal epithelial cells from canine mammary invasive ductal solid carcinoma and comedocarcinoma.

Deckwirth V, Hundi S, Hytonen M, Hannula S, Ellonen P, Bjorkenheim P BMC Cancer. 2024; 24(1):1524.

PMID: 39696035 PMC: 11657561. DOI: 10.1186/s12885-024-13239-w.


Structural basis for growth factor and nutrient signal integration on the lysosomal membrane by mTORC1.

Cui Z, Esposito A, Napolitano G, Ballabio A, Hurley J bioRxiv. 2024; .

PMID: 39605743 PMC: 11601357. DOI: 10.1101/2024.11.15.623810.


HerpDock: A GUI-based gateway to HSV-1 molecular docking insights.

Singh S, Kapoor D, Shukla D Comput Struct Biotechnol J. 2024; 23:3692-3701.

PMID: 39507821 PMC: 11539079. DOI: 10.1016/j.csbj.2024.10.013.


Predicting somatic mutation origins in cell-free DNA by semi-supervised GAN models.

Palizban F, Sarbishegi M, Kavousi K, Mehrmohamadi M Heliyon. 2024; 10(20):e39379.

PMID: 39492904 PMC: 11530920. DOI: 10.1016/j.heliyon.2024.e39379.


References
1.
Laplante M, Sabatini D . mTOR signaling in growth control and disease. Cell. 2012; 149(2):274-93. PMC: 3331679. DOI: 10.1016/j.cell.2012.03.017. View

2.
Sonpavde G, Choueiri T . Precision medicine for metastatic renal cell carcinoma. Urol Oncol. 2013; 32(1):5-15. DOI: 10.1016/j.urolonc.2013.07.010. View

3.
Gerlinger M, Rowan A, Horswell S, Math M, Larkin J, Endesfelder D . Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 366(10):883-892. PMC: 4878653. DOI: 10.1056/NEJMoa1113205. View

4.
Liu Q, Chang J, Wang J, Kang S, Thoreen C, Markhard A . Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem. 2010; 53(19):7146-55. PMC: 3893826. DOI: 10.1021/jm101144f. View

5.
Dumont F, Staruch M, Grammer T, Blenis J, Kastner C, Rupprecht K . Dominant mutations confer resistance to the immunosuppressant, rapamycin, in variants of a T cell lymphoma. Cell Immunol. 1995; 163(1):70-9. DOI: 10.1006/cimm.1995.1100. View