» Articles » PMID: 24583553

Themes and Variations in Riboswitch Structure and Function

Overview
Specialties Biochemistry
Biophysics
Date 2014 Mar 4
PMID 24583553
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.

Citing Articles

- Simplifying the Complex: Building, Simulating, and Analyzing Protein-Ligand Systems in .

Talagayev V, Chen Y, Doering N, Obendorf L, Denzinger K, Puls K J Chem Inf Model. 2025; 65(4):1967-1978.

PMID: 39933881 PMC: 11863370. DOI: 10.1021/acs.jcim.4c02158.


NusG-dependent RNA polymerase pausing is a common feature of riboswitch regulatory mechanisms.

Jayasinghe O, Ritchey L, Breil T, Newman P, Yakhnin H, Babitzke P Nucleic Acids Res. 2024; 52(21):12945-12960.

PMID: 39494516 PMC: 11602163. DOI: 10.1093/nar/gkae981.


START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.

Kim J, Seo M, Lim Y, Kim J Adv Sci (Weinh). 2024; 11(36):e2402029.

PMID: 39075726 PMC: 11423158. DOI: 10.1002/advs.202402029.


Ribocentre-switch: a database of riboswitches.

Bu F, Lin X, Liao W, Lu Z, He Y, Luo Y Nucleic Acids Res. 2023; 52(D1):D265-D272.

PMID: 37855663 PMC: 10767811. DOI: 10.1093/nar/gkad891.


8-oxoguanine riboswitches in bacteria detect and respond to oxidative DNA damage.

Hamal Dhakal S, Kavita K, Panchapakesan S, Roth A, Breaker R Proc Natl Acad Sci U S A. 2023; 120(40):e2307854120.

PMID: 37748066 PMC: 10556655. DOI: 10.1073/pnas.2307854120.


References
1.
Feng J, Walter N, Brooks 3rd C . Cooperative and directional folding of the preQ1 riboswitch aptamer domain. J Am Chem Soc. 2011; 133(12):4196-9. PMC: 3109358. DOI: 10.1021/ja110411m. View

2.
Dann 3rd C, Wakeman C, Sieling C, Baker S, Irnov I, Winkler W . Structure and mechanism of a metal-sensing regulatory RNA. Cell. 2007; 130(5):878-92. DOI: 10.1016/j.cell.2007.06.051. View

3.
Serganov A, Patel D . Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys. 2012; 41:343-70. PMC: 4696762. DOI: 10.1146/annurev-biophys-101211-113224. View

4.
Garst A, Heroux A, Rambo R, Batey R . Crystal structure of the lysine riboswitch regulatory mRNA element. J Biol Chem. 2008; 283(33):22347-51. PMC: 2504901. DOI: 10.1074/jbc.C800120200. View

5.
Gilbert S, Rambo R, Van Tyne D, Batey R . Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol. 2008; 15(2):177-82. DOI: 10.1038/nsmb.1371. View