» Articles » PMID: 24464286

Epigenome-wide Association Studies Without the Need for Cell-type Composition

Overview
Journal Nat Methods
Date 2014 Jan 28
PMID 24464286
Citations 114
Authors
Affiliations
Soon will be listed here.
Abstract

In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition--information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/.

Citing Articles

DNA methylation in human diseases.

Younesian S, Mohammadi M, Younesian O, Momeny M, Ghaffari S, Bashash D Heliyon. 2024; 10(11):e32366.

PMID: 38933971 PMC: 11200359. DOI: 10.1016/j.heliyon.2024.e32366.


MethParquet: an R package for rapid and efficient DNA methylation association analysis adopting Apache Parquet.

Wang Z, Cassidy M, Wallace D, Sofer T Bioinformatics. 2024; 40(7).

PMID: 38897661 PMC: 11219476. DOI: 10.1093/bioinformatics/btae410.


Computational deconvolution of DNA methylation data from mixed DNA samples.

Ferro Dos Santos M, Giuili E, De Koker A, Everaert C, De Preter K Brief Bioinform. 2024; 25(3).

PMID: 38762790 PMC: 11102637. DOI: 10.1093/bib/bbae234.


Quantifying the proportion of different cell types in the human cortex using DNA methylation profiles.

Hannon E, Dempster E, Davies J, Chioza B, Blake G, Burrage J BMC Biol. 2024; 22(1):17.

PMID: 38273288 PMC: 10809680. DOI: 10.1186/s12915-024-01827-y.


Genomic hypomethylation in cell-free DNA predicts responses to checkpoint blockade in lung and breast cancer.

Kim K, Kim H, Shin I, Noh S, Kim J, Suh K Sci Rep. 2023; 13(1):22482.

PMID: 38110532 PMC: 10728099. DOI: 10.1038/s41598-023-49639-4.


References
1.
Lippert C, Quon G, Kang E, Kadie C, Listgarten J, Heckerman D . The benefits of selecting phenotype-specific variants for applications of mixed models in genomics. Sci Rep. 2013; 3:1815. PMC: 3648840. DOI: 10.1038/srep01815. View

2.
Houseman E, Accomando W, Koestler D, Christensen B, Marsit C, Nelson H . DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012; 13:86. PMC: 3532182. DOI: 10.1186/1471-2105-13-86. View

3.
Huang D, Sherman B, Lempicki R . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57. DOI: 10.1038/nprot.2008.211. View

4.
Koestler D, Christensen B, Karagas M, Marsit C, Langevin S, Kelsey K . Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics. 2013; 8(8):816-26. PMC: 3883785. DOI: 10.4161/epi.25430. View

5.
Reinius L, Acevedo N, Joerink M, Pershagen G, Dahlen S, Greco D . Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012; 7(7):e41361. PMC: 3405143. DOI: 10.1371/journal.pone.0041361. View