» Articles » PMID: 24357407

Discovery and Visualization of MiRNA-mRNA Functional Modules Within Integrated Data Using Bicluster Analysis

Overview
Specialty Biochemistry
Date 2013 Dec 21
PMID 24357407
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA-mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA-mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA-mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease.

Citing Articles

Biclustering data analysis: a comprehensive survey.

Castanho E, Aidos H, Madeira S Brief Bioinform. 2024; 25(4).

PMID: 39007596 PMC: 11247412. DOI: 10.1093/bib/bbae342.


Identification of neoplasm-specific signatures of miRNA interactions by employing a systems biology approach.

Arshinchi Bonab R, Asfa S, Kontou P, Karakulah G, Pavlopoulou A PeerJ. 2022; 10:e14149.

PMID: 36213495 PMC: 9536303. DOI: 10.7717/peerj.14149.


Network-based cancer genomic data integration for pattern discovery.

Zhu F, Li J, Liu J, Min W BMC Genom Data. 2021; 22(Suppl 1):54.

PMID: 34886811 PMC: 8662848. DOI: 10.1186/s12863-021-01004-y.


A holistic miRNA-mRNA module discovery.

Shommo G, Apolloni B Noncoding RNA Res. 2021; 6(4):159-166.

PMID: 34703956 PMC: 8521321. DOI: 10.1016/j.ncrna.2021.09.001.


TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers.

Min W, Chang T, Zhang S, Wan X PLoS Comput Biol. 2021; 17(6):e1009044.

PMID: 34061840 PMC: 8195367. DOI: 10.1371/journal.pcbi.1009044.


References
1.
Papadopoulos G, Reczko M, Simossis V, Sethupathy P, Hatzigeorgiou A . The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 2008; 37(Database issue):D155-8. PMC: 2686456. DOI: 10.1093/nar/gkn809. View

2.
Peng X, Li Y, Walters K, Rosenzweig E, Lederer S, Aicher L . Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics. 2009; 10:373. PMC: 2907698. DOI: 10.1186/1471-2164-10-373. View

3.
Cheng Y, Church G . Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol. 2000; 8:93-103. View

4.
Ozen M, Creighton C, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2007; 27(12):1788-93. DOI: 10.1038/sj.onc.1210809. View

5.
Stallings R, Foley N, Bryan K, Buckley P, Bray I . Therapeutic targeting of miRNAs in neuroblastoma. Expert Opin Ther Targets. 2010; 14(9):951-62. DOI: 10.1517/14728222.2010.510136. View