» Articles » PMID: 26222740

Identification of Spinal Cord MicroRNA and Gene Signatures in a Model of Chronic Stress-Induced Visceral Hyperalgesia in Rat

Overview
Journal PLoS One
Date 2015 Jul 30
PMID 26222740
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Animal studies have shown that stress could induce epigenetic and transcriptomic alterations essential in determining the balance between adaptive or maladaptive responses to stress. We tested the hypothesis that chronic stress in rats deregulates coding and non-coding gene expression in the spinal cord, which may underline neuroinflammation and nociceptive changes previously observed in this model.

Methods: Male Wistar rats were exposed to daily stress or handled, for 10 days. At day 11, lumbar spinal segments were collected and processed for mRNA/miRNA isolation followed by expression profiling using Agilent SurePrint Rat Exon and Rat miRNA Microarray platforms. Differentially expressed gene lists were generated using the dChip program. Microarrays were analyzed using the Ingenuity Pathways Analysis (IPA) tool from Ingenuity Systems. Multiple methods were used for the analysis of miRNA-mRNA functional modules. Quantitative real time RT-PCR for Interleukin 6 signal transducer (gp130), the Signal Transducer And Activator Of Transcription 3 (STAT3), glial fibrillary acidic protein and mir-17-5p were performed to confirm levels of expression.

Results: Gene network analysis revealed that stress deregulated different inflammatory (IL-6, JAK/STAT, TNF) and metabolic (PI3K/AKT) signaling pathways. MicroRNA array analysis revealed a signature of 39 deregulated microRNAs in stressed rats. MicroRNA-gene network analysis showed that microRNAs are regulators of two gene networks relevant to inflammatory processes. Specifically, our analysis of miRNA-mRNA functional modules identified miR-17-5p as an important regulator in our model. We verified miR-17-5p increased expression in stress using qPCR and in situ hybridization. In addition, we observed changes in the expression of gp130 and STAT3 (involved in intracellular signaling cascades in response to gp130 activation), both predicted targets for miR-17-5p. A modulatory role of spinal mir17-5p in the modulation of visceral sensitivity was confirmed in vivo.

Conclusion: Using an integrative high throughput approach, our findings suggest a link between miR-17-5p increased expression and gp130/STAT3 activation providing new insight into the possible mechanisms mediating the effect of chronic stress on neuroinflammation in the spinal cord.

Citing Articles

Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review.

Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A Genes (Basel). 2024; 15(8).

PMID: 39202362 PMC: 11353898. DOI: 10.3390/genes15081003.


Peripheral and Spinal Mechanisms Involved in Electro-Acupuncture Therapy for Visceral Hypersensitivity.

Tahir A, Li J, Tang Y Front Neurosci. 2021; 15:696843.

PMID: 34658755 PMC: 8511820. DOI: 10.3389/fnins.2021.696843.


GG soluble mediators ameliorate early life stress-induced visceral hypersensitivity and changes in spinal cord gene expression.

McVey Neufeld K, Strain C, Pusceddu M, Waworuntu R, Manurung S, Gross G Neuronal Signal. 2020; 4(4):NS20200007.

PMID: 33343931 PMC: 7726314. DOI: 10.1042/NS20200007.


miRNA regulation of social and anxiety-related behaviour.

Narayanan R, Schratt G Cell Mol Life Sci. 2020; 77(21):4347-4364.

PMID: 32409861 PMC: 11104968. DOI: 10.1007/s00018-020-03542-7.


Do MicroRNAs Modulate Visceral Pain?.

Tao Z, Xue Y, Li J, Traub R, Cao D Biomed Res Int. 2019; 2018:5406973.

PMID: 30627562 PMC: 6304628. DOI: 10.1155/2018/5406973.


References
1.
Sarafian T, Montes C, Imura T, Qi J, Coppola G, Geschwind D . Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One. 2010; 5(3):e9532. PMC: 2835741. DOI: 10.1371/journal.pone.0009532. View

2.
Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H . JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain. 2011; 134(Pt 4):1127-39. PMC: 4571138. DOI: 10.1093/brain/awr025. View

3.
Tenorio G, Kulkarni A, Kerr B . Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain. Pain. 2012; 154(1):71-81. DOI: 10.1016/j.pain.2012.09.008. View

4.
Brenn D, Richter F, Schaible H . Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum. 2006; 56(1):351-9. DOI: 10.1002/art.22282. View

5.
Bradesi S, Golovatscka V, Ennes H, McRoberts J, Karagiannides I, Karagiannidis I . Role of astrocytes and altered regulation of spinal glutamatergic neurotransmission in stress-induced visceral hyperalgesia in rats. Am J Physiol Gastrointest Liver Physiol. 2011; 301(3):G580-9. PMC: 3174538. DOI: 10.1152/ajpgi.00182.2011. View