» Articles » PMID: 24336217

Diet Rapidly and Reproducibly Alters the Human Gut Microbiome

Overview
Journal Nature
Specialty Science
Date 2013 Dec 17
PMID 24336217
Citations 4330
Authors
Affiliations
Soon will be listed here.
Abstract

Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

Citing Articles

Fecal microbiota transplantation mitigates postdieting weight regain in mice by modulating the gut-liver axis.

Cao H, Xu J, Wang H, Yi W, Yang D, Yang J BMC Microbiol. 2025; 25(1):135.

PMID: 40075266 PMC: 11905490. DOI: 10.1186/s12866-025-03853-4.


Tryptophan and Its Metabolite Serotonin Impact Metabolic and Mental Disorders via the Brain-Gut-Microbiome Axis: A Focus on Sex Differences.

Xu M, Zhou E, Shi H Cells. 2025; 14(5).

PMID: 40072112 PMC: 11899299. DOI: 10.3390/cells14050384.


Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities.

Iliev I, Ananthakrishnan A, Guo C Nat Rev Microbiol. 2025; .

PMID: 40065181 DOI: 10.1038/s41579-025-01163-0.


Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease.

Su F, Su M, Wei W, Wu J, Chen L, Sun X Gut Microbes. 2025; 17(1):2476570.

PMID: 40063366 PMC: 11901428. DOI: 10.1080/19490976.2025.2476570.


Impact of diet on the gut mycobiome of Hong Kong Chinese infants.

Fong J, Lok K, Yeung M, Li W, Woo P, Teng J Comput Struct Biotechnol J. 2025; 27:661-671.

PMID: 40061440 PMC: 11889518. DOI: 10.1016/j.csbj.2025.02.006.


References
1.
Zhang T, Breitbart M, Lee W, Run J, Wei C, Soh S . RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2005; 4(1):e3. PMC: 1310650. DOI: 10.1371/journal.pbio.0040003. View

2.
Strimmer K . fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics. 2008; 24(12):1461-2. DOI: 10.1093/bioinformatics/btn209. View

3.
Turnbaugh P, Ley R, Mahowald M, Magrini V, Mardis E, Gordon J . An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027-31. DOI: 10.1038/nature05414. View

4.
Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N . Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012; 6(8):1621-4. PMC: 3400413. DOI: 10.1038/ismej.2012.8. View

5.
Devkota S, Wang Y, Musch M, Leone V, Fehlner-Peach H, Nadimpalli A . Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012; 487(7405):104-8. PMC: 3393783. DOI: 10.1038/nature11225. View