» Articles » PMID: 24142103

An Excitable Signal Integrator Couples to an Idling Cytoskeletal Oscillator to Drive Cell Migration

Overview
Journal Nat Cell Biol
Specialty Cell Biology
Date 2013 Oct 22
PMID 24142103
Citations 120
Authors
Affiliations
Soon will be listed here.
Abstract

It is generally believed that cytoskeletal activities drive random cell migration, whereas signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving SCAR/WAVE, Arp 2/3 and actin-binding proteins, is capable of generating only rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI(3)K and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, exhibiting wave propagation, refractoriness and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of 'pacemaker' signal transduction and 'idling motor' cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration.

Citing Articles

Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration.

Iwamoto K, Matsuoka S, Ueda M Nat Commun. 2025; 16(1):117.

PMID: 39746985 PMC: 11696275. DOI: 10.1038/s41467-024-55389-2.


PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.

Deng Y, Banerjee T, Pal D, Banerjee P, Zhan H, Borleis J bioRxiv. 2024; .

PMID: 39314378 PMC: 11419139. DOI: 10.1101/2024.09.15.613115.


Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells .

Inguscio C, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G Eur J Histochem. 2024; 68(3).

PMID: 39252536 PMC: 11445695. DOI: 10.4081/ejh.2024.4106.


Competition and synergy of Arp2/3 and formins in nucleating actin waves.

Chua X, Tong C, Su M, Xu X, Xiao S, Wu X Cell Rep. 2024; 43(7):114423.

PMID: 38968072 PMC: 11378572. DOI: 10.1016/j.celrep.2024.114423.


Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration.

Lin Y, Pal D, Banerjee P, Banerjee T, Qin G, Deng Y Nat Cell Biol. 2024; 26(7):1062-1076.

PMID: 38951708 PMC: 11364469. DOI: 10.1038/s41556-024-01453-4.


References
1.
Hecht I, Kessler D, Levine H . Transient localized patterns in noise-driven reaction-diffusion systems. Phys Rev Lett. 2010; 104(15):158301. PMC: 2882887. DOI: 10.1103/PhysRevLett.104.158301. View

2.
Eden S, Rohatgi R, Podtelejnikov A, Mann M, Kirschner M . Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature. 2002; 418(6899):790-3. DOI: 10.1038/nature00859. View

3.
Xiong Y, Huang C, Iglesias P, Devreotes P . Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A. 2010; 107(40):17079-86. PMC: 2951443. DOI: 10.1073/pnas.1011271107. View

4.
Chen L, Iijima M, Tang M, Landree M, Huang Y, Xiong Y . PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell. 2007; 12(4):603-14. PMC: 1986835. DOI: 10.1016/j.devcel.2007.03.005. View

5.
Chen L, Janetopoulos C, Huang Y, Iijima M, Borleis J, Devreotes P . Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol Biol Cell. 2003; 14(12):5028-37. PMC: 284804. DOI: 10.1091/mbc.e03-05-0339. View