» Articles » PMID: 23821544

The Legionella Pneumophila GTPase Activating Protein LepB Accelerates Rab1 Deactivation by a Non-canonical Hydrolytic Mechanism

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2013 Jul 4
PMID 23821544
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

GTPase activating proteins (GAPs) from pathogenic bacteria and eukaryotic host organisms deactivate Rab GTPases by supplying catalytic arginine and glutamine fingers in trans and utilizing the cis-glutamine in the DXXGQ motif of the GTPase for binding rather than catalysis. Here, we report the transition state mimetic structure of the Legionella pneumophila GAP LepB in complex with Rab1 and describe a comprehensive structure-based mutational analysis of potential catalytic and recognition determinants. The results demonstrate that LepB does not simply mimic other GAPs but instead deploys an expected arginine finger in conjunction with a novel glutamic acid finger, which forms a salt bridge with an indispensible switch II arginine that effectively locks the cis-glutamine in the DXXGQ motif of Rab1 in a catalytically competent though unprecedented transition state configuration. Surprisingly, a heretofore universal transition state interaction with the cis-glutamine is supplanted by an elaborate polar network involving critical P-loop and switch I serines. LepB further employs an unusual tandem domain architecture to clamp a switch I tyrosine in an open conformation that facilitates access of the arginine finger to the hydrolytic site. Intriguingly, the critical P-loop serine corresponds to an oncogenic substitution in Ras and replaces a conserved glycine essential for the canonical transition state stereochemistry. In addition to expanding GTP hydrolytic paradigms, these observations reveal the unconventional dual finger and non-canonical catalytic network mechanisms of Rab GAPs as necessary alternative solutions to a major impediment imposed by substitution of the conserved P-loop glycine.

Citing Articles

Intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism.

Gilsbach B, Ho F, Riebenbauer B, Zhang X, Guaitoli G, Kortholt A Elife. 2024; 12.

PMID: 39699947 PMC: 11658767. DOI: 10.7554/eLife.91083.


Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles.

Vaughn B, Abu Kwaik Y Front Cell Infect Microbiol. 2021; 11:722433.

PMID: 34858868 PMC: 8632064. DOI: 10.3389/fcimb.2021.722433.


The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis.

Iyer S, Das C J Biol Chem. 2021; 297(6):101340.

PMID: 34695417 PMC: 8605245. DOI: 10.1016/j.jbc.2021.101340.


High-Throughput Assay for Profiling the Substrate Specificity of Rab GTPase-Activating Proteins.

Mishra A, Lambright D Methods Mol Biol. 2021; 2293:27-43.

PMID: 34453708 DOI: 10.1007/978-1-0716-1346-7_3.


Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview.

Li G, Segev N Methods Mol Biol. 2021; 2293:1-18.

PMID: 34453706 DOI: 10.1007/978-1-0716-1346-7_1.


References
1.
. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760-3. DOI: 10.1107/S0907444994003112. View

2.
Murshudov G, Skubak P, Lebedev A, Pannu N, Steiner R, Nicholls R . REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):355-67. PMC: 3069751. DOI: 10.1107/S0907444911001314. View

3.
Al-Quadan T, Price C, Abu Kwaik Y . Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol. 2012; 20(6):299-306. PMC: 3603140. DOI: 10.1016/j.tim.2012.03.005. View

4.
Suh H, Lee D, Lee K, Ku B, Choi S, Woo J . Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J. 2009; 29(2):496-504. PMC: 2824451. DOI: 10.1038/emboj.2009.347. View

5.
Muller M, Shkumatov A, Oesterlin L, Schoebel S, Goody P, Goody R . Characterization of enzymes from Legionella pneumophila involved in reversible adenylylation of Rab1 protein. J Biol Chem. 2012; 287(42):35036-35046. PMC: 3471704. DOI: 10.1074/jbc.M112.396861. View