» Articles » PMID: 23706743

The EEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation

Abstract

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:

Citing Articles

Branched-Chain Amino Acids Target miR-203a/fosb Axis to Promote Skeletal Muscle Growth in Common Carp ().

Cao X, Cui H, Ji X, Lu Y, Kang Q, Lu R Aquac Nutr. 2025; 2025:9406490.

PMID: 40046093 PMC: 11882326. DOI: 10.1155/anu/9406490.


Rejuvenation of Bone Marrow Mesenchymal Stem Cells: Mechanisms and Their Application in Senile Osteoporosis Treatment.

Tian R, Zhang R, Ma C Biomolecules. 2025; 15(2).

PMID: 40001580 PMC: 11853522. DOI: 10.3390/biom15020276.


Energy metabolism in health and diseases.

Liu H, Wang S, Wang J, Guo X, Song Y, Fu K Signal Transduct Target Ther. 2025; 10(1):69.

PMID: 39966374 PMC: 11836267. DOI: 10.1038/s41392-025-02141-x.


Eukaryotic Elongation Factor 2 Kinase EFK-1/eEF2K promotes starvation resistance by preventing oxidative damage in C. elegans.

Yan J, Bhanshali F, Shuzenji C, Mendenhall T, Taylor S, Ermakova G Nat Commun. 2025; 16(1):1752.

PMID: 39966347 PMC: 11836464. DOI: 10.1038/s41467-025-56766-1.


Elongation factor 2 in cancer: a promising therapeutic target in protein translation.

Jia X, Huang C, Liu F, Dong Z, Liu K Cell Mol Biol Lett. 2024; 29(1):156.

PMID: 39707196 PMC: 11660736. DOI: 10.1186/s11658-024-00674-7.


References
1.
Ye J, Kumanova M, Hart L, Sloane K, Zhang H, De Panis D . The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010; 29(12):2082-96. PMC: 2892366. DOI: 10.1038/emboj.2010.81. View

2.
Wu X, Northcott P, Dubuc A, Dupuy A, Shih D, Witt H . Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012; 482(7386):529-33. PMC: 3288636. DOI: 10.1038/nature10825. View

3.
Carlberg U, Nilsson A, Nygard O . Functional properties of phosphorylated elongation factor 2. Eur J Biochem. 1990; 191(3):639-45. DOI: 10.1111/j.1432-1033.1990.tb19169.x. View

4.
Wu H, Yang J, Jin S, Zhang H, Hait W . Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res. 2006; 66(6):3015-23. DOI: 10.1158/0008-5472.CAN-05-1554. View

5.
Jagoe R, Lecker S, Gomes M, Goldberg A . Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J. 2002; 16(13):1697-712. DOI: 10.1096/fj.02-0312com. View