» Articles » PMID: 23661806

Renal CD133(+)/CD73(+) Progenitors Produce Erythropoietin Under Hypoxia and Prolyl Hydroxylase Inhibition

Overview
Specialty Nephrology
Date 2013 May 11
PMID 23661806
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The identity of the peritubular population of cells with mesenchymal phenotype thought responsible for producing erythropoietin in humans remains unclear. Here, renal CD133(+)/CD73(+) progenitor cells, isolated from the human renal inner medulla and described as a population of mesenchymal progenitors, released erythropoietin under hypoxic conditions. CD133(-) cells did not synthesize erythropoietin, and CD133(+) progenitor cells stopped producing erythropoietin when they differentiated and acquired an epithelial phenotype. Inhibition of prolyl hydroxylases, using either dimethyloxalylglycine or a small hairpin RNA against prolyl hydroxylase-2, increased both hypoxia-inducible factor-2α (HIF-2α) expression and erythropoietin transcription. Moreover, under hypoxic conditions, inhibition of prolyl hydroxylase significantly increased erythropoietin release by CD133(+) progenitors. Finally, blockade of HIF-2α impaired erythropoietin synthesis by CD133(+) progenitors. Taken together, these results suggest that it is the renal CD133(+) progenitor cells that synthesize and release erythropoietin under hypoxia, via the prolyl hydroxylase-HIF-2α axis, in the human kidney. In addition, this study provides rationale for the therapeutic use of prolyl hydroxylase inhibitors in the setting of acute or chronic renal injury.

Citing Articles

The transcriptional and regulatory identity of erythropoietin producing cells.

Kragesteen B, Giladi A, David E, Halevi S, Geirsdottir L, Lempke O Nat Med. 2023; 29(5):1191-1200.

PMID: 37106166 DOI: 10.1038/s41591-023-02314-7.


Fount, fate, features, and function of renal erythropoietin-producing cells.

Dahl S, Bapst A, Khodo S, Scholz C, Wenger R Pflugers Arch. 2022; 474(8):783-797.

PMID: 35750861 PMC: 9338912. DOI: 10.1007/s00424-022-02714-7.


Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin-producing cells.

Bapst A, Knopfel T, Nolan K, Imeri F, Schuh C, Hall A J Cell Physiol. 2022; 237(5):2420-2433.

PMID: 35014036 PMC: 9303970. DOI: 10.1002/jcp.30677.


Transforming growth factor-β1 decreases erythropoietin production through repressing hypoxia-inducible factor 2α in erythropoietin-producing cells.

Shih H, Pan S, Wu C, Chou Y, Chen C, Chang F J Biomed Sci. 2021; 28(1):73.

PMID: 34724959 PMC: 8561873. DOI: 10.1186/s12929-021-00770-2.


Efficient isolation of interstitial fibroblasts directly from mouse kidneys or indirectly after expansion.

Nakai T, Iwamura Y, Suzuki N STAR Protoc. 2021; 2(4):100826.

PMID: 34585160 PMC: 8452886. DOI: 10.1016/j.xpro.2021.100826.


References
1.
Muchnik E, Kaplan J . HIF prolyl hydroxylase inhibitors for anemia. Expert Opin Investig Drugs. 2011; 20(5):645-56. DOI: 10.1517/13543784.2011.566861. View

2.
Beirao I, Moreira L, Barandela T, Lobato L, Silva P, Gouveia C . Erythropoietin production by distal nephron in normal and familial amyloidotic adult human kidneys. Clin Nephrol. 2010; 74(5):327-35. DOI: 10.5414/cnp74327. View

3.
Minamishima Y, Kaelin Jr W . Reactivation of hepatic EPO synthesis in mice after PHD loss. Science. 2010; 329(5990):407. PMC: 3668543. DOI: 10.1126/science.1192811. View

4.
Rosenberger C, Rosen S, Paliege A, Heyman S . Pimonidazole adduct immunohistochemistry in the rat kidney: detection of tissue hypoxia. Methods Mol Biol. 2009; 466:161-74. DOI: 10.1007/978-1-59745-352-3_12. View

5.
Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003; 22(16):4082-90. PMC: 175782. DOI: 10.1093/emboj/cdg392. View