» Articles » PMID: 23621645

FASTER: an Unsupervised Fully Automated Sleep Staging Method for Mice

Overview
Journal Genes Cells
Date 2013 Apr 30
PMID 23621645
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and typically requires visual inspection of electroencephalography (EEG) and electromyography (EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the most important bottleneck for large-scale sleep research in animals. We have developed an unsupervised, fully automated sleep staging method for mice that allows less subjective and high-throughput evaluation of sleep. Fully Automated Sleep sTaging method via EEG/EMG Recordings (FASTER) is based on nonparametric density estimation clustering of comprehensive EEG/EMG power spectra. FASTER can accurately identify sleep patterns in mice that have been perturbed by drugs or by genetic modification of a clock gene. The overall accuracy is over 90% in every group. 24-h data are staged by a laptop computer in 10 min, which is faster than an experienced human rater. Dramatically improving the sleep staging process in both quality and throughput FASTER will open the door to quantitative and comprehensive animal sleep research.

Citing Articles

Open-Source Algorithm for Automated Vigilance State Classification Using Single-Channel Electroencephalogram in Rodents.

Saevskiy A, Suntsova N, Kosenko P, Alam M, Kostin A Sensors (Basel). 2025; 25(3).

PMID: 39943560 PMC: 11820057. DOI: 10.3390/s25030921.


Utility of complexity analysis in electroencephalography and electromyography for automated classification of sleep-wake states in mice.

Furutani N, Saito Y, Niwa Y, Katsuyama Y, Nariya Y, Kikuchi M Sci Rep. 2025; 15(1):3080.

PMID: 39856071 PMC: 11760340. DOI: 10.1038/s41598-024-74008-0.


Assessing environmental gradients in relation to dark CO fixation in estuarine wetland microbiomes.

Gruterich L, Woodhouse J, Mueller P, Tiemann A, Ruscheweyh H, Sunagawa S Appl Environ Microbiol. 2025; 91(1):e0217724.

PMID: 39745433 PMC: 11784365. DOI: 10.1128/aem.02177-24.


MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice.

Jiang C, Xie W, Zheng J, Yan B, Luo J, Zhang J Biosensors (Basel). 2024; 14(8).

PMID: 39194635 PMC: 11353116. DOI: 10.3390/bios14080406.


SlumberNet: deep learning classification of sleep stages using residual neural networks.

Jha P, Valekunja U, Reddy A Sci Rep. 2024; 14(1):4797.

PMID: 38413666 PMC: 10899258. DOI: 10.1038/s41598-024-54727-0.


References
1.
WINSON J . A simple sleep stage detector for the rat. Electroencephalogr Clin Neurophysiol. 1976; 41(2):179-82. DOI: 10.1016/0013-4694(76)90044-4. View

2.
Kuwahara H, Higashi H, Mizuki Y, Matsunari S, Tanaka M, INANAGA K . Automatic real-time analysis of human sleep stages by an interval histogram method. Electroencephalogr Clin Neurophysiol. 1988; 70(3):220-9. DOI: 10.1016/0013-4694(88)90082-x. View

3.
Brankack J, Kukushka V, Vyssotski A, Draguhn A . EEG gamma frequency and sleep-wake scoring in mice: comparing two types of supervised classifiers. Brain Res. 2010; 1322:59-71. DOI: 10.1016/j.brainres.2010.01.069. View

4.
Fraiwan L, Lweesy K, Khasawneh N, Fraiwan M, Wenz H, Dickhaus H . Classification of sleep stages using multi-wavelet time frequency entropy and LDA. Methods Inf Med. 2010; 49(3):230-7. DOI: 10.3414/ME09-01-0054. View

5.
Johns T, Piper D, James G, Birtley R, Fischer M . Automated analysis of sleep in the rat. Electroencephalogr Clin Neurophysiol. 1977; 43(1):103-5. DOI: 10.1016/0013-4694(77)90201-2. View