6.
Phan H, Andreotti F, Cooray N, Chen O, De Vos M
. Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification. IEEE Trans Biomed Eng. 2018; 66(5):1285-1296.
PMC: 6487915.
DOI: 10.1109/TBME.2018.2872652.
View
7.
Crisler S, Morrissey M, Anch A, Barnett D
. Sleep-stage scoring in the rat using a support vector machine. J Neurosci Methods. 2007; 168(2):524-34.
DOI: 10.1016/j.jneumeth.2007.10.027.
View
8.
Einizade A, Nasiri S, Sardouie S, Clifford G
. ProductGraphSleepNet: Sleep staging using product spatio-temporal graph learning with attentive temporal aggregation. Neural Netw. 2023; 164:667-680.
DOI: 10.1016/j.neunet.2023.05.016.
View
9.
Tezuka T, Kumar D, Singh S, Koyanagi I, Naoi T, Sakaguchi M
. Real-time, automatic, open-source sleep stage classification system using single EEG for mice. Sci Rep. 2021; 11(1):11151.
PMC: 8160151.
DOI: 10.1038/s41598-021-90332-1.
View
10.
Fraigne J, Wang J, Lee H, Luke R, Pintwala S, Peever J
. A novel machine learning system for identifying sleep-wake states in mice. Sleep. 2023; 46(6).
PMC: 10262194.
DOI: 10.1093/sleep/zsad101.
View
11.
Stephansen J, Olesen A, Olsen M, Ambati A, Leary E, Moore H
. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun. 2018; 9(1):5229.
PMC: 6283836.
DOI: 10.1038/s41467-018-07229-3.
View
12.
Penzel T, Conradt R
. Computer based sleep recording and analysis. Sleep Med Rev. 2003; 4(2):131-148.
DOI: 10.1053/smrv.1999.0087.
View
13.
Phan H, Andreotti F, Cooray N, Chen O, De Vos M
. SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging. IEEE Trans Neural Syst Rehabil Eng. 2019; 27(3):400-410.
PMC: 6481557.
DOI: 10.1109/TNSRE.2019.2896659.
View
14.
Bixler E, Kales A, Vela-Bueno A, Drozdiak R, Jacoby J, Manfredi R
. Narcolepsy/cataplexy. III: Nocturnal sleep and wakefulness patterns. Int J Neurosci. 1986; 29(3-4):305-16.
DOI: 10.3109/00207458608986159.
View
15.
Yamabe M, Horie K, Shiokawa H, Funato H, Yanagisawa M, Kitagawa H
. MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks. Sci Rep. 2019; 9(1):15793.
PMC: 6823352.
DOI: 10.1038/s41598-019-51269-8.
View
16.
Fulda S, Romanowski C, Becker A, Wetter T, Kimura M, Fenzel T
. Rapid eye movements during sleep in mice: high trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents. BMC Neurosci. 2011; 12:110.
PMC: 3228710.
DOI: 10.1186/1471-2202-12-110.
View
17.
Tsinalis O, Matthews P, Guo Y
. Automatic Sleep Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders. Ann Biomed Eng. 2015; 44(5):1587-97.
PMC: 4837220.
DOI: 10.1007/s10439-015-1444-y.
View
18.
Yin J, Xu J, Ren T
. Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors (Basel). 2023; 13(3).
PMC: 10046225.
DOI: 10.3390/bios13030395.
View
19.
Yue H, Chen Z, Guo W, Sun L, Dai Y, Wang Y
. Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice. Sleep Med Rev. 2024; 74:101897.
DOI: 10.1016/j.smrv.2024.101897.
View
20.
Hunt J, Coulson E, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O
. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener. 2022; 17(1):2.
PMC: 8744293.
DOI: 10.1186/s13024-021-00504-w.
View