» Articles » PMID: 23599343

A RANKL-PKCβ-TFEB Signaling Cascade is Necessary for Lysosomal Biogenesis in Osteoclasts

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2013 Apr 20
PMID 23599343
Citations 115
Authors
Affiliations
Soon will be listed here.
Abstract

Bone resorption by osteoclasts requires a large number of lysosomes that release proteases in the resorption lacuna. Whether lysosomal biogenesis is a consequence of the action of transcriptional regulators of osteoclast differentiation or is under the control of a different and specific transcriptional pathway remains unknown. We show here, through cell-based assays and cell-specific gene deletion experiments in mice, that the osteoclast differentiation factor RANKL promotes lysosomal biogenesis once osteoclasts are differentiated through the selective activation of TFEB, a member of the MITF/TFE family of transcription factors. This occurs following PKCβ phosphorylation of TFEB on three serine residues located in its last 15 amino acids. This post-translational modification stabilizes and increases the activity of this transcription factor. Supporting these biochemical observations, mice lacking in osteoclasts--either TFEB or PKCβ--show decreased lysosomal gene expression and increased bone mass. Altogether, these results uncover a RANKL-dependent signaling pathway taking place in differentiated osteoclasts and culminating in the activation of TFEB to enhance lysosomal biogenesis-a necessary step for proper bone resorption.

Citing Articles

Evolutionary conserved regulation of TFEB stability by the E3 ubiquitin ligase WWP2 modulates response to stress .

Garcia-Sanchez J, Bonnet E, Loubatier C, Doye A, Paillier G, Segui F iScience. 2025; 28(2):111838.

PMID: 39995862 PMC: 11848471. DOI: 10.1016/j.isci.2025.111838.


Tribbles pseudokinase 3 drives cancer stemness in oral squamous cell carcinoma cells by supporting the expression levels of SOX2 and EGFR.

Huang Y, Chien P, Wang W, Hsu L, Huang Y, Chang W Int J Mol Med. 2025; 55(3).

PMID: 39791220 PMC: 11758896. DOI: 10.3892/ijmm.2025.5485.


Lysosome quality control in health and neurodegenerative diseases.

Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P Cell Mol Biol Lett. 2024; 29(1):116.

PMID: 39237893 PMC: 11378602. DOI: 10.1186/s11658-024-00633-2.


Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity.

Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H J Cell Biol. 2024; 223(11).

PMID: 39196068 PMC: 11354204. DOI: 10.1083/jcb.202308099.


Lysosomal biogenesis and function in osteoclasts: a comprehensive review.

Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X Front Cell Dev Biol. 2024; 12:1431566.

PMID: 39170917 PMC: 11335558. DOI: 10.3389/fcell.2024.1431566.


References
1.
Frattini A, Orchard P, Sobacchi C, Giliani S, Abinun M, Mattsson J . Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000; 25(3):343-6. DOI: 10.1038/77131. View

2.
Lotinun S, Kiviranta R, Matsubara T, Alzate J, Neff L, Luth A . Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 2013; 123(2):666-81. PMC: 3561821. DOI: 10.1172/JCI64840. View

3.
Epple H, Cremasco V, Zhang K, Mao D, Longmore G, Faccio R . Phospholipase Cgamma2 modulates integrin signaling in the osteoclast by affecting the localization and activation of Src kinase. Mol Cell Biol. 2008; 28(11):3610-22. PMC: 2423304. DOI: 10.1128/MCB.00259-08. View

4.
Huttlin E, Jedrychowski M, Elias J, Goswami T, Rad R, Beausoleil S . A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010; 143(7):1174-89. PMC: 3035969. DOI: 10.1016/j.cell.2010.12.001. View

5.
Burgess T, Qian Y, Kaufman S, Ring B, Van G, Capparelli C . The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999; 145(3):527-38. PMC: 2185088. DOI: 10.1083/jcb.145.3.527. View