» Articles » PMID: 23512423

A Database of Alkaline-earth-coordinated Peptide Cross Sections: Insight into General Aspects of Structure

Overview
Specialty Chemistry
Date 2013 Mar 21
PMID 23512423
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

A database of 1470 collision cross sections (666 doubly- and 804 triply-charged) of alkaline-earth-coordinated tryptic peptide ions [where the cation (M(2+)) correspond to Mg(2+), Ca(2+), or Ba(2+)] is presented. The utility of such an extensive set of measurements is illustrated by extraction of general properties of M(2+)-coordinated peptide structures. Specifically, we derive sets of intrinsic size parameters (ISPs) for individual amino acid residues for M(2+)-coordinated peptides. Comparison of these parameters with existing ISPs for protonated peptides suggests that M(2+) binding occurs primarily through interactions with specific polar aliphatic residues (Asp, Ser, and Thr) and the peptide backbone. A comparison of binding interactions for these alkaline-earth metals with interactions reported previously for alkali metals is provided. Finally, we describe a new analysis in which ISPs are used as probes for assessing peptide structure based on amino acid composition.

Citing Articles

Structural Diversity of Di-Metalized Arginine Evidenced by Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy in the Gas Phase.

Feng R, Xu Y, Kong X Molecules. 2021; 26(21).

PMID: 34770955 PMC: 8587954. DOI: 10.3390/molecules26216546.


Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective.

Rivera E, Djambazova K, Neumann E, Caprioli R, Spraggins J J Mass Spectrom. 2020; 55(12):e4614.

PMID: 32955134 PMC: 8211109. DOI: 10.1002/jms.4614.


Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules.

Morris C, Poland J, May J, McLean J Methods Mol Biol. 2019; 2084:1-31.

PMID: 31729651 PMC: 8101504. DOI: 10.1007/978-1-0716-0030-6_1.


A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues.

Dilger J, Glover M, Clemmer D J Am Soc Mass Spectrom. 2017; 28(7):1293-1303.

PMID: 28357817 DOI: 10.1007/s13361-016-1592-9.


Ion Mobility Collision Cross Section Compendium.

May J, Morris C, McLean J Anal Chem. 2016; 89(2):1032-1044.

PMID: 28035808 PMC: 5744664. DOI: 10.1021/acs.analchem.6b04905.


References
1.
Nousiainen M, Derrick P, Kaartinen M, Maenpaa P, Rouvinen J, Vainiotalo P . A mass spectrometric study of metal binding to osteocalcin. Chem Biol. 2002; 9(2):195-202. DOI: 10.1016/s1074-5521(02)00104-7. View

2.
Liu D, Seuthe A, Ehrler O, Zhang X, Wyttenbach T, Hsu J . Oxytocin-receptor binding: why divalent metals are essential. J Am Chem Soc. 2005; 127(7):2024-5. DOI: 10.1021/ja046042v. View

3.
Chitta R, Gross M . Electrospray ionization-mass spectrometry and tandem mass spectrometry reveal self-association and metal-ion binding of hydrophobic peptides: a study of the gramicidin dimer. Biophys J. 2003; 86(1 Pt 1):473-9. PMC: 1303814. DOI: 10.1016/S0006-3495(04)74125-9. View

4.
Nemirovskiy O, Gross M . Determination of calcium binding sites in gas-phase small peptides by tandem mass spectrometry. J Am Soc Mass Spectrom. 1998; 9(10):1020-8. DOI: 10.1016/S1044-0305(98)00071-3. View

5.
Fenn J, Mann M, Meng C, Wong S, Whitehouse C . Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989; 246(4926):64-71. DOI: 10.1126/science.2675315. View