» Articles » PMID: 24845359

Large-scale Collision Cross-section Profiling on a Traveling Wave Ion Mobility Mass Spectrometer

Overview
Specialty Chemistry
Date 2014 May 22
PMID 24845359
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a traveling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMS(E), often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMS(E), the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMS(E) analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions.

Citing Articles

Peptide collision cross sections of 22 post-translational modifications.

Will A, Oliinyk D, Bleiholder C, Meier F Anal Bioanal Chem. 2023; 415(27):6633-6645.

PMID: 37758903 PMC: 10598134. DOI: 10.1007/s00216-023-04957-4.


Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques.

Ma X Molecules. 2022; 27(19).

PMID: 36235003 PMC: 9572214. DOI: 10.3390/molecules27196466.


Deep learning the collisional cross sections of the peptide universe from a million experimental values.

Meier F, Kohler N, Brunner A, Wanka J, Voytik E, Strauss M Nat Commun. 2021; 12(1):1185.

PMID: 33608539 PMC: 7896072. DOI: 10.1038/s41467-021-21352-8.


Effect of Phosphorylation on the Collision Cross Sections of Peptide Ions in Ion Mobility Spectrometry.

Ogata K, Chang C, Ishihama Y Mass Spectrom (Tokyo). 2021; 10:A0093.

PMID: 33552826 PMC: 7843839. DOI: 10.5702/massspectrometry.A0093.


Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations.

Li A, Conant C, Zheng X, Bloodsworth K, Orton D, Garimella S Anal Chem. 2020; 92(22):14976-14982.

PMID: 33136380 PMC: 8127335. DOI: 10.1021/acs.analchem.0c02829.


References
1.
Tang K, Shvartsburg A, Lee H, Prior D, Buschbach M, Li F . High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal Chem. 2005; 77(10):3330-9. PMC: 1829302. DOI: 10.1021/ac048315a. View

2.
Smith D, Knapman T, Campuzano I, Malham R, Berryman J, Radford S . Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester). 2009; 15(2):113-30. DOI: 10.1255/ejms.947. View

3.
McLean J, McLean J, Wu Z, Becker C, Perez L, Pace C . Factors that influence helical preferences for singly charged gas-phase peptide ions: the effects of multiple potential charge-carrying sites. J Phys Chem B. 2009; 114(2):809-16. PMC: 2818683. DOI: 10.1021/jp9105103. View

4.
Tao L, McLean J, McLean J, Russell D . A collision cross-section database of singly-charged peptide ions. J Am Soc Mass Spectrom. 2007; 18(7):1232-8. DOI: 10.1016/j.jasms.2007.04.003. View

5.
Bond N, Shliaha P, Lilley K, Gatto L . Improving qualitative and quantitative performance for MS(E)-based label-free proteomics. J Proteome Res. 2013; 12(6):2340-53. DOI: 10.1021/pr300776t. View