» Articles » PMID: 23438771

Verification of a Computational Cardiovascular System Model Comparing the Hemodynamics of a Continuous Flow to a Synchronous Valveless Pulsatile Flow Left Ventricular Assist Device

Overview
Journal ASAIO J
Specialty General Surgery
Date 2013 Feb 27
PMID 23438771
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

Citing Articles

Parameter Identification of Cardiovascular System Model Used for Left Ventricular Assist Device Algorithms.

Pawar S, Rapp E, Gohean J, Longoria R J Eng Sci Med Diagn Ther. 2022; 5(1):011006.

PMID: 35832687 PMC: 8826254. DOI: 10.1115/1.4053065.


Hybrid Mock Circulatory Loop Simulation of Extreme Cardiac Events.

Rapp E, Pawar S, Longoria R IEEE Trans Biomed Eng. 2022; 69(9):2883-2892.

PMID: 35254970 PMC: 9466991. DOI: 10.1109/TBME.2022.3156963.


Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis.

Capoccia M, Marconi S, Singh S, Pisanelli D, De Lazzari C Biomed Eng Online. 2018; 17(1):52.

PMID: 29720187 PMC: 5930731. DOI: 10.1186/s12938-018-0491-7.


Mechanical Circulatory Support for Advanced Heart Failure: Are We about to Witness a New "Gold Standard"?.

Capoccia M J Cardiovasc Dev Dis. 2018; 3(4).

PMID: 29367578 PMC: 5715724. DOI: 10.3390/jcdd3040035.


Scaling the Low-Shear Pulsatile TORVAD for Pediatric Heart Failure.

Gohean J, Larson E, Hsi B, Kurusz M, Smalling R, Longoria R ASAIO J. 2016; 63(2):198-206.

PMID: 27832001 PMC: 5325766. DOI: 10.1097/MAT.0000000000000460.


References
1.
Cox L, Loerakker S, Rutten M, de Mol B, van de Vosse F . A mathematical model to evaluate control strategies for mechanical circulatory support. Artif Organs. 2009; 33(8):593-603. DOI: 10.1111/j.1525-1594.2009.00755.x. View

2.
Slaughter M, Rogers J, Milano C, Russell S, Conte J, Feldman D . Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009; 361(23):2241-51. DOI: 10.1056/NEJMoa0909938. View

3.
De Lazzari C, Darowski M, Ferrari G, Clemente F, Guaragno M . Computer simulation of haemodynamic parameters changes with left ventricle assist device and mechanical ventilation. Comput Biol Med. 2000; 30(2):55-69. DOI: 10.1016/s0010-4825(99)00026-8. View

4.
Shi Y, Korakianitis T, Bowles C . Numerical simulation of cardiovascular dynamics with different types of VAD assistance. J Biomech. 2007; 40(13):2919-33. DOI: 10.1016/j.jbiomech.2007.02.023. View

5.
Danielsen M, Ottesen J . Describing the pumping heart as a pressure source. J Theor Biol. 2001; 212(1):71-81. DOI: 10.1006/jtbi.2001.2348. View