» Articles » PMID: 23326225

A Guide to Enterotypes Across the Human Body: Meta-analysis of Microbial Community Structures in Human Microbiome Datasets

Overview
Specialty Biology
Date 2013 Jan 18
PMID 23326225
Citations 285
Authors
Affiliations
Soon will be listed here.
Abstract

Recent analyses of human-associated bacterial diversity have categorized individuals into 'enterotypes' or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes.

Citing Articles

The impact of coffee on gut microbial structure based on in vitro fecal incubation system.

Kim G, Kim S, Lee W, Shin H Food Sci Biotechnol. 2025; 34(4):971-979.

PMID: 39974865 PMC: 11832990. DOI: 10.1007/s10068-024-01717-7.


Multidimensional scaling improves distance-based clustering for microbiome data.

Chen G, Wang X, Sun Q, Tang Z Bioinformatics. 2025; 41(2).

PMID: 39874446 PMC: 11814494. DOI: 10.1093/bioinformatics/btaf042.


The Impact of Complementary Feeding on Fecal Microbiota in Exclusively Breast-Fed Infants with Cystic Fibrosis (A Descriptive Study).

Asensio-Grau A, Garriga M, Vicente S, Andres A, Ribes-Koninckx C, Calvo-Lerma J Nutrients. 2024; 16(23.

PMID: 39683464 PMC: 11643620. DOI: 10.3390/nu16234071.


Antibiotic-perturbed microbiota and the role of probiotics.

Szajewska H, Scott K, de Meij T, Forslund-Startceva S, Knight R, Koren O Nat Rev Gastroenterol Hepatol. 2024; 22(3):155-172.

PMID: 39663462 DOI: 10.1038/s41575-024-01023-x.


Micro-DeMix: a mixture beta-multinomial model for investigating the heterogeneity of the stool microbiome compositions.

Liu R, Wang Y, Cheng D Bioinformatics. 2024; 40(12).

PMID: 39563467 PMC: 11645251. DOI: 10.1093/bioinformatics/btae667.


References
1.
. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207-14. PMC: 3564958. DOI: 10.1038/nature11234. View

2.
Dethlefsen L, Relman D . Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2010; 108 Suppl 1:4554-61. PMC: 3063582. DOI: 10.1073/pnas.1000087107. View

3.
. A framework for human microbiome research. Nature. 2012; 486(7402):215-21. PMC: 3377744. DOI: 10.1038/nature11209. View

4.
Ley R, Turnbaugh P, Klein S, Gordon J . Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122):1022-3. DOI: 10.1038/4441022a. View

5.
McDonald D, Price M, Goodrich J, Nawrocki E, DeSantis T, Probst A . An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011; 6(3):610-8. PMC: 3280142. DOI: 10.1038/ismej.2011.139. View